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Abstract

Motivated by the idea that local systems should only exist for some “motivic reason”, P. Deligne formulated
the companion conjecture | , Conjecture 1.2.10] for normal schemes. Based on L. Lafforgue’s proof for curve,
we will introduce various works around this conjecture (by P. Deligne, V. Drinfeld, H. Esnault, M. Kerz and A.

Cadoret), in particular a proof of the companion conjecture for smooth schemes using “skeleton sheaves”.
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1 Introduction

1.1 /-Independence and Motives

(1.1.1) Let F, be a finite field with characteristic p, F a separable closure of F,, ¢ a prime number # p. Let Xj
be a scheme separated and of finite type over F, and X = Xy xp, F. Consider cohomology groups with compact
supports H (X, Q). They are finite dimensional Q-vector spaces, zero for i > 2dim Xp, acted by Galois group
G = Gal(F/F,). Consider the ¢-adic numbers

Tr (g, H; (X,Q0)) = Y _(=1)"Tr (g, H, (X, Q) (1.1)

for g € G. A natural question is : is this sum independent of the choice of £7

(1.1.2) Take g =1, then the sum (1.1) is the Euler-Poincaré characteristic (with compact supports)

Xe (X,Q) = (—1)"dim H. (X, Q).
Let F be the geometric Frobenius, by Grothendieck’s trace formula (A.1.10)
(=

Z(Xo, T) = [ det (1 — FT, H (X, Q) 7

we have x. (X,Qq) = —degZ(Xy, T), thus follows the independence of ¢.

(1.1.3) Consider the Betti numbers

bi (X, Qg) = dim H (X, Qg),
blc (X, Q[) = dim H"Lc (X, Q[)

If Xy is proper and smooth, we can use Weil conjectures and make induction on dimension of X by choosing a
Lefschetz pencil to get that, for each i, b (X, Qy) is independent of ¢, and actually coincides for any Weil cohomology
[ , Corollary 1].



(1.1.4) We consider

Pi(T) := det (1 — TF | H (X, Qy))
Pi (1) :=det (1 — TF| H: (X,Qy)).

Since deg (Pé) = 0" (X,Qy),deg (PU) = b° (X, Qy), the independence of £ of b (X, Q) follow from the indepen-
dence of Py(T) and P, ,(T). In general, the independence of £ of P;(T) and P ,(7T) is unknown. But P. Mannisto

and M. Olsson [MO] show the independence for dimension of X, < 2.

(1.1.5) Suppose that Xy and Y, are both proper and smooth and that we are given a F,morphism f: Yy — Xo.

For each integer ¢ > 0 and each £ # p, we have an induced map (because fis proper) which is Galois-equivariant
(f*)i,é D H, (X, Q) — H,(Y,Qy).

Tt is conjectured that the characteristic polynomials of F on both the kernel and cokernel of (f*) ;.0 have Z-coefficients,

independent of £ # p.
Now let’s introduce the formalism of “Motives”.

(1.1.6) Let Fy be a finite field with characteristic p. Let Sch/F, be the category of normal schemes separated
and of finite type over k. Grothendieck expected that attached to any Xy € Sch /F,, we have a graded semisimple
Q-linear rigid abelian ®-category M(Xy, Q), with End(1) = Q if X is connected.

Grothendieck expected several properties satisfied by M(Xy, Q) | , §2]. Let’s clarify two properties here:

1. For any prime number ¢ different from p, there is a faithful Q-linear ®-functor

Rf : M(_7Q) ® QZ — Sh (_7(@5)’
where X — Sh (Xo, Qp) is the étale stack of lisse Qp-étale sheaves over Sch /F,,.

2. There is a contravariant functor from the category of smooth projective schemes f: Yy — Xy to motives
h(Yo) € M(Xp,Q) such that

Reoh(Y) = P R"LQ:.

(1.1.7) For any field F D Q, let us define M(Xp, F) to be the pseudo-abelian envelope | , Tag 09SF] of

(1.1.8) Suppose that Grothendieck standard conjecture D holds, i.e. numerical equivalence coincides with Q-
cohomological equivalence for every ¢ # p. Then motives for numerical equivalence have f-adic realizations for
every ¢ # p. According to U. Jannsen | ], the category of motives for numerical equivalence is abelian and
semisimple (actually, the proof only uses Wedderburn’s theorem and linear algebra). For a given variety proper
and smooth over a finite field, the Kiinneth components of the diagonal are rationally algebraic, represented by
universal (i.e., independent of £ # p) Q-linear combinations of the graphs of iterates of Frobenius | , Theorem
2, 1)]. So the individual cohomology groups H'. (X, Q,) and H'. (Y, Q) are the f-adic realizations of motives. By U.
Jannsen | ], the corresponding motivic kernels and cokernels of f* exist. Our ¢-adic kernels and cokernels are

the ¢-adic realizations of these motivic kernels and cokernels. Then (1.1.4) follows by | , Theorem 2, 2)].


https://stacks.math.columbia.edu/tag/09SF

Conjetcture (1.1.9) The essential image of
Ry : M (Xo,Q) — Sh (X0, Q)

consists of direct sums of irreducible sheaves V which are pure of integral weight, and such that the eigenvalues of

geometric Frobenius F,, for all closed points z € | Xp| are ¢/-adic units for all prime numbers ¢ # p.

The motivic expectation above motivates P. Deligne’s companion conjecture [ , 1.2.10].

1.2 L. Lafforgue’s Langlands Theorem

(1.2.1) We follow the notation in [ ]. If @ is an algebraic extension of Q, by a @-coefficient we mean a
lisse Weil Q-sheaf. Similarly, by a Q,-coefficient we mean a lisse Weil Q,-sheaf. A Weil Q,-sheaf Cy is said to be
algebraic if for any « in any X (Fgn), Tr (F3,Co) is algebraic number.

(1.2.2) Using the global Langlands correspondence (between cuspidal automorphisms and irreducible Q,-coefficients

with finite determinant), L. Lafforgue proved a theorem for smooth curves | , Theorem VIL.6]:

Theorem (1.2.3) Let X,/F, be a smooth curve, let Vg be a Q-coefficient on Xo with determinant of finite order.
Then:

(i) There exists a field Qy, which is a finite extension of Q and for all z € |Xy|, we have xz(Vo, T) =
det (Id— TF, | V;) € Qv,|T], where F is the geometric Frobenius.iii900

(ii) For an arbitrary, not necessarily continuous, automorphism o € Aut (Q,/Q), there is an irreducible lisse

Q/-Weil sheaf Vg on X, called o-companion, with determinant of finite order such that

XLC(V87 T) = O-(XLE( Vo, T'))v

where o acts on the polynomial ring Q,[7] by ¢ on Q, and by o(7T) = T.
(iii) Vp is pure of weight O .

This was already expected by P. Deligne in | | since at that time the Langlands correspondence was available
for n =2, £ # p by the work of V. Drinfeld.

(1.2.4) On higher dimensional schemes, unfortunately, there seems to be no analogue of the Langlands correspon-
dence (even conjectural) which would provide geometric origins for lisse sheaves on higher-dimensional varieties,

except in the case of weight 1 where some results are known.

1.3 P. Deligne’s Companion Conjecture

(1.3.1) Motivated by the idea that local systems should only exist for some “geometric reason”, P. Deligne
conjectured [ , Conjecture 1.2.10] that every Q,-coefficient Cy on a separated normal scheme of finite type over

F, admits a Q-companion C}.

Definition (1.3.2) Let Cy be a Q-coefficient and let C}) be a Qy-coefficient. Fixing two isomorphisms ¢ : Q, = C
and ¢/ : Q, = C, we say that C} is a Q-companion of Cy if for any z € | Xg|, x(C, T) coincides with x,(C’, T), i.e.

Jdet (Id— TF, | CL) = vdet (Id— TF, | Cy).



Conjetcture (1.3.3) Let X be a normal scheme of finite type over F,, ¢ # p a prime, and Cy an irreducible
Q-coefficient on X, whose determinant has finite order.

(a) For some number field Qc,, Co is Qc,-algebraic: for all z, we have x,(C, T) € Qc,[T]. The Q¢, will be called
trace field of Cy.

(b) Cy is pure of weight 0: for every algebraic embedding of Q, into C, for all z, the roots of x,(C, T) in C all
have complex absolute value 1 (one can avoid having to embed Q, into C by (a)).

(c) For all z, the roots of x,(C, T) have trivial A-adic valuation at all finite places of A of @ not lying above p.

(d) For every place A of @ above p, for all x, the roots of x,(C, T) have A-adic valuation at most % rank(C) times
the valuation of #£(z) (the order of the residue field).

(e) For every prime ¢’ # p, there exists a Q-coefficient C{, which is irreducible with determinant of finite order

and which is a companion of Cy.

Remark (1.3.4) 1. If a given coefficient Cy is pure, its trace field Q¢, C Q.

2. By Proposition (A.1.8), after some twist we can always assume the determinant of the lisse sheaf has finite

order.

3. The uniqueness of #/-adic companions up to semi-simplification is unique by applying the Cebotarev density

theorem to mod-£™ representations as in the proof of | , Proposition VI.11].

4. By | ], part (b) of (1.3.3) holds iff the following holds: for any Q,-coefficient Cy pure of weight 0, there
exists an number field @ such that for all z, we have x,(C, T) € Q[T]. Actually, if part (b) of (1.3.3) holds,
then [ | proves that Cy is pure of weight 0. Conversely, replace Cy by its semi-simplification and assume its
irreducibility, there there exists a Q,-coefficient W, of rank 1 and of weight 0 on Spec [, such that det(Co@Wp)
is of finite order. Then the statement follows from the fact that Tr(F,,Co @ Wy) = Tr(Fy, Co) - Tr(Fyz, Wo).

1.4 P. Deligne’s Proof of Finiteness

In Chapter (2), we will give a proof of part (a) of conjecture (1.3.3) due to P. Deligne himself | ]. We

provide a sketch of proof here.

(1.4.1) Firstly for curve case, we consider an absolutely irreducible Q,-coefficient Cy on a smooth curve X
defined over F,. WLOG, we can assume that Xy is affine. The “complexity” of X, will be measured by the integer
by (X) := dim HL(X, Q). We assume that Cy is algebraic (1.2.1). Our goal is to determine an integer N, depending
on the “complexity” of (X, C), such that E is generated by the Tr(F,,Co) for z in Xo(Fg) with n < N and it contains
all traces of Cy. Let log;r(a) = max(0, log,(a)). If C is tamely ramified, we obtain N of the form

O (log! (b1(X))) + O(1)

where the implicit constants in O depend on the rank of Cy. For a general Cy, we replace by (X) with b (X) +
> ses @s(C), where a(C) is the slope (B.2.3) which measures the wildness of the ramification of C at s.

(1.4.2) For the general case, P. Deligne uses several dévissages and use N. Katz’s estimation of Betti number
[ ]. But in section (2.3) we will also give an alternative proof by H. Esnault and M. Kerz | ], which uses
ramification theory to provide a suitable bound N and then applies a Deligne-Fourier transformation to get the

result.



1.5 V. Drinfeld’s Theorem

Using L. Larfforgue’s result for curve, V. Drinfeld proves the companion conjecture for smooth case.

Theorem (1.5.1) Let Xy be a smooth scheme over Fy. Let @ be a finite extension of Q. Let A, A\’ be nonar-
chimedean places of @ prime to p and let @y, @, be the corresponding completions. Let Cy be a Q,/-coefficient on
Xo such that for every closed point z € Xy the polynomial x,(C, T) has coefficients in @ and its roots are A-adic

units. Then there exists a @)\—coefﬁcient on X, compatible with Cy.

Remark (1.5.2) 1. By P. Deligne’s conjecture | , Conjecture 1.2.10], the above theorem should hold for

normal scheme.

2. By the definition, the Q,-coefficient is defined over some finite extension L/@Qy, and from the proof we will
know that L is only determined by the rank of Cy and @ | , Lemma 2.7].

(1.5.3) The key object we will define in Chapter (3) is 2-skeleton sheaf. This concept is used by V. Drinfeld
[ ] and implicitly present in [ ], but the terminology is introduced in | ] and credited to L. Kindler.
Roughly speaking, 2-skeleton sheaf of a given smooth scheme Xj is the data of coefficients arising from all curves in
Xo. The idea is to compare the skeleton sheaf with local system arising from Xy, and in smooth case, we can find a
subset of skeleton sheaf on X called geometric skeleton (3.2) which is bijective to the coefficients arising from Xj.

The proof proceeds in three steps: the first step (4.1.2) is using compactness argument given by M. Kerz, the
second step (4.1.3) will use the results of tame fundamental group from | ], and the third step (4.1.4) is more

geometric and uses Bertini theorem.

1.6 Summary

Given two isomorphisms ¢ : Q, = C and ¢/ : Q, = C, combining all the results above, now we get the companion

theorem:

Theorem (1.6.1) Let Xy be a smooth variety, separated and of finite type over F,. Let Cy be an irreducible
Qy-coefficient with finite determinant. Then:

1. Cy is pure of weight 0;

2. Qc, is a finite extension of Q;

3. There exists an étale Qg-coefficient C) which is compatible (with respect to ¢, ') with Co.
We will give two applications of the companion theorem in chapter (6), (7).

(1.6.2) The Cebotarev density theorem plays a fundamental part in arithmetic geometry in that it often enables
to reduce problems about Q,-local systems on X to problems about semisimple Q,-local systems on points. We
will prove Tannakian Cebotarev density theorem for semisimple coefficient in chapter (6). For étale coefficient,
the theorem just follows from classical Cebotarev density theorem, and A. Cadoret reformulates Theorem (6.0.2)
in terms of the characteristic polynomial map attached to Cy [ , proposition 4.4] and proves the theorem for

semisimple coeflicients using companion theorem.

(1.6.3) The second application is to the theory of weakly motivic sheaves introduced by V. Drinfeld | ]. P.
Deligne defined Zpix (X, Q) as the category of mixed Q-complexes in [ , §6.2.2], and by | ] and | 1,



Drnix (X7 @4) is stable under “six operators”. Using the companion theorem (1.6.1), we define the category of weakly

motivic sheaves P ot (X, @5) in (7) and prove it’s also stable under “six operators”.

2 P. Deligne’s Proof of Finiteness

In | ], P. Deligne proved the Conjecture (1.3.3)(b):

Theorem (2.0.1) Let X, be a scheme of finite type over F,. If Cy is an algebraic Weil Qy-sheaf on Xy, then there
exists a finite extension @ C Q, of Q such that for every n and every z € Xo (Fyn), x4(C, T) € Q[T.

Remark (2.0.2) Using the identity between formal power series:

logdet(1 — ft, V) = — ZTr v g,

n>1

where V is a linear representation and fis an endomorphism of V. For the theorem above, it is equivalent to show

that for every n and every z € Xo (Fyn), Tr (Fy,Co) is in Q.

2.1 Curve Case

(2.1.1) Let Xy be a smooth, affine curve over a finite field, and let X be the scalar extension to algebraic closure,

let Cy be an algebraic Q,-coefficient of rank 7. Denote:

Ny = 2log; (272 (bl(X) + ZO‘I(C>)) ’
N=[No| + 2r,

where the function log;' denotes sup (0, logq).
In this section, we prove:

Proposition (2.1.2) Let @ be the extension of Q in Q, generated by the Tt (F,Co) for zin X (F ) with n < N.
Then, for any n and any z € Xg (Fgn), Tr (Fy,Co) is in Q.

Lemma (2.1.3) Let «o; be k distinct nonzero numbers. If for some suitable m, the A, satisfy

Z)\iaf:() for m<r<m+k,

then all the A, are zero.

Proof. We can rewrite the equation as:
(o) as=0 for0<s<k
and since the Vandermonde determinant det(a) is non-zero, the solution for A, can only be zero. O

(2.1.4) Let Fo,Go be two semisimple Qg-coefficients of rank r over Xo. Let a.(Fo,G0) = aq(Fo & Go) =
sup (az(Fo), @x(Go))-



Proposition (2.1.5) If for every integer n < N and every z € Xo (Fgn), we have
TI’ (FI, ]:0) = TI (Fz, go)

then Fy is isomorphic to Gg.

Proof. Applying (A.2.9) and (A.2.10) to Fo @ Go, we obtain decompositions:

-7:0 = @pa* (Sa,l ® Prz Wa)
acA

Go = P pax (Say @ pry W)

acA

(2.1)

In (2.1), for each a € A, there is an integer n(a) > 1, such that S, is a Qy-coefficient on X, := Xg QF, Fgne,
W, and W/, are Q,-Weil sheaves on Spec (JFqn(a)), po and pr, are the projections from X, to Xy and Spec (Fqn(a)>7
respectively.

Let St(ll)l denote the image of S, 1 under the ¢th power of Frobenius F' € Gal (]Fqn(a,> /Fq), and we omit the
subscript 1 to indicate its inverse image of X, to X.

According to (A.2.10), the S,1, W,, and W, in (2.1) satisfy:

(i) det (Sq,1) is of finite order.

(ii) The SO (where a € A and i € Z/n(a)) are irreducible Q,-coefficients on X, pairwise non-isomorphic.

(iii) For each a, either W, or W, is nonzero.

Since by definition S,(j) is a direct factor of either F or G, we have

s () < sup (@a(F), u(9))

Let A(n) denote the set of a in A such that n(a)| n.

Key Claim (2.1.6) If n > Ny (2.1.1), the functions on Xg (Fg»)

tai: x— Tr (FI,S(SZ)l) (a € A(n), i€ Z/n(a))

)

are linearly independent.

Proof of Claim: The functions t, ; take values in a number field £ C Q. Let us embed Einto C to treat them as
functions with complex values. The idea of the proof is to show that they are almost orthogonal, in L? (Xq (F)).

According to | , VIL 6 (i)], S ‘(ll)l is pure of weight 0. The complex conjugate of {,; is thus given by
z— Tr (FI, S((;)lv)’ and the inner product (& j, tas) = Y ta,i(2) " tp () is

(o t) = 32T (P (813,813 )
By the trace formula, this sum is the trace of the Frobenius F € W(F/F,;») on the compact cohomology:
(s tas) = 3 (1) T (B HE (X, Ao (9,517

Since X is affine, H is trivial. The “dominant” term is given by H?: it equals ¢" if (a,4) = (b,7) and is zero
otherwise. Precisely, H? (X, Horr (8{;,83)) ~ Hom (Sé’X, S{;‘X)V (—1).

The promised almost orthogonality comes from the fact that the k£ = 1 term is of order O (q"/ 2) for large n.
More precisely, since 27 (S g), S 1(31)) is pure of weight 0, the eigenvalues of F on its H. are of absolute value g2

or 1 by Weil II, using (B.2), the k=1 term is bounded in absolute value by ¢"? times

dim A < dimSY - dim S - (bl(X) +3 au(F, g)) . (2.2)



Suppose there exists a linear dependence relation )\bj ty,; = 0. Let a,i be such that ‘)\ai

is maximal among

a,i’

all ‘A,L j’. Dividing by A
the following:

we can assume that A, ; =1 and ’)\b,j‘ <1 for be A(n) and j € Z/n(b). We then have

0= <Z RLXE tflvi> = Z b (tb.4> ta,i)
b,j

(2.3)
= ¢" + remainder,
where the absolute value of the remainder is bounded by
3 ‘)\bj‘ Tr <F i (X, oo (853'),315]')))
b,j
< g2 -2 (bl(X) +3 (T, g)) :
The assumption on n ensures that |remainder| < ¢", leading to a contradiction.
O

Corollary (2.1.7) Let F be the Frobenius of W(k/F ). If n > Ny and Tr(F,, Fo) = Tr(Fy, Go) for z € Xo(Fgn),
then
Tr (F,W,) = Tr (F,W.)

for every a € A(n).

Actually, the decompositions (2.1) yield the identity between trace functions:

> taiTr(F W) =Y tai Tr (F, W)

and we apply Lemma (2.1.6).

Let’s go back to (2.1.5). We need to show that for each a, and for F' the geometric Frobenius of W(k/F ;i ),
F has the same multiset of eigenvalues on W, and W/. According to the claim and the assumption of proposition
(2.1.5), if n is divisible by n(a) and
[NoJ +1<n<N=|[No|+2r

then we have
Tr (F“/ n(a) Wa) —Tr (F"/ n(a) W;) .

There are at least |2r/n(a)] such values of n, and W, and W/, have dimension at most |r/n(a)]. It remains to
apply the lemma (2.1.3) to the set of all eigenvalues of F on W, and W/. More precisely, if the set of all eigenvalues
of Fon W, (resp. W}) is {a;} (resp. {f;}), then > a; — > 8; = 0, by lemma (2.1.3) there must exist some «o; = 3,

then we can make induction. O

(2.1.8) Proof of Proposition (2.1.2).

By semisimplifying Cp, we can assume that Cy is semi-simple, so that we can apply (2.1.5). Let E be an
appropriately large Galois extension of Q in Q, containing all Tr (F,,Cp) for any z in Xo (Fy). To show that all
trace contained in E must contained in @, we need to show that for o € Gal (E/Q), the Tr (F,,Cp) are fixed by o.
This is equivalent to

Tr (F,,Co) = Tr (Fs,0(Cp)) . (2.4)

By assumption, (2.4) holds if zis in Xo (Fg4») with n < N. Using (2.1.5) and the fact that a, (Co) = a; (0 (Co))[

(2.2.1)], we conclude that Cy is isomorphic to o (Cp). The assertion follows from this.



Variant (2.1.9) Let’s keep the assumptions and notations from (2.1.5). Suppose ¢: X’ — X is a connected étale
covering of X on which the inverse images of F and G have tame ramification. For any Q,-sheaf 7 on X, whose

inverse image on X’ has tame ramification, the morphism
q: H'(X,H) - H (X', ¢"H) .
is injective, since its composition with Tr, is multiplication by the degree of the covering. Therefore, we have
dim H:(X,H) < dim H: (X', H) < rank(H) - by (X) (2.5)

If we repeat the arguments that prove (2.1.5) using this estimate instead of (2.5), we obtain:

Variant (2.1.10) Let N}, := 2log] (2r°b1 (X)) and N := |Ny] 4 2r. If for every integer n < N and every
z € Xy (Fgn), we have
Tr (FI, .F()) =Tr (Fmgo) )

then Fy is isomorphic to Gg.

Similarly, if Fp is as in (A.1.12), and its inverse image under ¢ : X’ — X has tame ramification, then o (Fy)
has the same property: after a finite extension of the base field F,, we can assume that ¢ : X’ — X arises from
q : Xy — Xo, and we apply the fact that if F is tamely ramified, then o(F) is also tamely ramified (this follows
from the Grothendieck trace formula (A.1.10) and (B.2.6)) . By repeating the same arguments that prove (A.1.12),

we obtain the following:

Variant (2.1.11) Let @ be the extension of Q in Q, generated by the Tr (F,, Fy) for z in Xo (Fp) with n < N,
where N’ is as in (2.1.10). Then, for every n and every z € Xg (Fgn), Tr (Fy, Fo) is in Q.

2.2 General Case

(2.2.1) For the proof of the theorem, we can reduce to the case that
(i) Xo is an affine, smooth, irreducible scheme equipped with an étale morphism ¢ : Xy — A’g to an affine space
over F;
(ii) Cp is lisse, irreducible, and det (Cy) is of finite order.
Actually the scheme Xy in the theorem admits a partition into locally closed irreducible parts F; satisfying:
i) and such that Cy|, is lisse. It suffices to treat each (F;, Co| ) separately. We can then treat each irreducible
F; F;

subquotient of Co|p separately and twist it to satisfy (ii).
Now let’s state the main proposition who implies the main theorem (2.0.1).

Proposition (2.2.2) If the integer n is sufficiently large, for any z € Xo(IFyn), the trace Tr(Fy,Co) is contained in
the extension of Q in Q, generated by the traces Tr(F,,Co) with y € Xo(Fyn) and m < n.

If this proposition holds, then N is chosen such that for all integers n > N, the condition of being “sufficiently
large” holds, then we can deduce by induction that every trace Tr(F, C) is contained in the extension of Q generated
by the traces Tr(F)y,Co) with y in Xo(Fm) for m < N. This extension is finite, therefore giving the main theorem
(2.0.1).
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(2.2.3) Let’s choose a generator of Fu over F,. This choice defines an Fg.-point 2 of the affine line A} over F,,

whose Galois conjugates under Gal(F . /F,) are all distinct.

Lemma (2.2.4) If yis an F-point of A}, there exists an F,-morphism P: A} — Al, i.e., a polynomial P € F,[T],
that sends 7/ to y and has degree < n— 1.

Proof. The oo/, for 0 € Gal(F g /F,), are n distinct points on the affine line. Hence, there exists a unique polynomial
P e F [T, of degree < n— 1, such that for each o, it takes the value oy at o2/, which implies that P sends 2’ to y.

Its uniqueness guarantees its invariance under Galois, which implies that it belongs to F,[T]. O

Corollary (2.2.5) There exists an F,-morphism P : A} — A}, with coordinate polynomials of degree < n — 1,
that sends 2 in AJ(Fyn) to ¢(2) in AE(F ).

Proof. This follows by applying Lemma (2.2.4) to each coordinate of ¢(x). O

(2.2.6) Let us fix P as in (2.2.5). Consider Xjj as the fiber product of X, and A} over A%. Since ¢(z) = P(),
there exists z € X{j(IF4») that maps to both z and 2. We denote by Z, the connected component of X{ containing

z (which is a curve):

Zo s XU 25 AL z€ Z (Fyr)
\J i lp J (26)
P
Xo —£— Ak 2 € Xo (Fyn)

The morphism ¢ is étale (since ¢ is étale and use base change), and its degree over the generic point of A} is
at most equal to the degree D of . Let ky be the field of constants of the curve Z; over F,. The degree d of k
over I, is less than or equal to D because Zy has degree at most D over A}, and d divides n since Zy has a point
over [Fyn. We extend the base field from F, to F 4, and let Z; (resp. X1) be the connected component of Zy ®p, F ¢

(resp. Xo ®F, F ) containing z (resp. ):

z: Spec (Fgn) Z = Zo
I | [
z: Spec (Fgn) X1 Xo (2.7)

| J

Spec (F <) — Spec (F,)

The curve Z; over F 4 is smooth and absolutely irreducible (cf. | , Tag 04KZ]).
Finally, we extend the base field from F  to F = ﬁq to obtain X and Z. For X, there exists a connected étale
covering ¢ : X’ — X such that the monodromy group of ¢*C is a pro-f-group (for the proof, see (3.2.4)). Let Z' be

a connected component of the inverse image Z” of the étale covering X’ of X:

7 —— 7' —— 7

L

X — X

(2.2.7) Proof of Proposition (2.2.2).
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The inverse image of C on Z' is tamely ramified. We aim to apply (2.1.11) to the curve Z; over F 4, to 7 — Z,
and to the inverse image C; of C on Z;. Let’s estimate by (7).

The composed F-morphism

X — X5 Ak

is affine. Therefore, it factors through a closed embedding X' < AME and there exists a family of A’ equations of
degree < b defining X’ in AM

The graph I'p of P: A' — AF is defined in A'** by k equations of degree < n— 1. The fiber product, computed
over F, of X — AF and P : A' — A* is the intersection, in A™**  of the inverse images of X' C AF* and
I'p C AUF. Therefore, it is defined in A™F¥ by A := A’ 4 k equations of degree < sup(B,n—1).

According to Katz [ |, this yields an upper bound on the sum of Betti numbers of this fiber product, and
hence on b'(Z'), since Z is a connected component of the fiber product.

For n > B, we have A equations of degree < n — 1 in an affine space of dimension k+ ¥ + 1, and Katz gives
by (Z) < 6.24(An+ 3)FTF+1, (2.8)
Let us define, as before,
N, = 21og;rd (2r°b1 (7))  and
N = |Ny| + 2r.

The bound (2.8) is polynomial in n, and d is bounded by D. As soon as n is sufficiently large, we have

n
->N.
d>

Let us assume that n is large enough for this inequality to hold. From (2.7) , we have Tr (F3,C1) = Tr (Fy, Co).
According to (2.1.11), this trace is contained in the field generated by Tr (F,,C;) for y in Z; (Fg») with d| m and
% (the degree of Fyn over Fyq) at most equal to N'. Moreover, by (2.7), these traces are also Tr (Fy, ~P*Co> for y
in Xo (Fgn) with % < N'. We have

Tr (F)y P'Co) = Tr (P, Co ) -
And Tr (F,,Co) belongs to the field generated by Tr (Fy,Co) with y € Xo (Fgn) and & < N < Z, and thus m < n.
This proves (2.2.2).

2.3 An Alternative Proof | | (By H. Esnault and M. Kerz)

(2.3.1) In | | H. Esnault and M. Kerz use ramification theory to give an alternative proof which is a bit more
direct than N. Katz’s estimation of Betti number. By (1.3.4) (3) , it’s enough to consider the case Q,-coefficient
pure of weight 0.

(2.3.2) Let X, — X, be a finite dominant morphism with X, normal noetherian integral and X[, integral.
And K C K’ is the corresponding extension of the fields of rational functions. Consider the diagonal morphism
¢+ Xp — Xo Xx, Xo- Let T C Ox;», x; be the coherent ideal sheaf of the diagonal.

Definition (2.3.3) The homological different of X{, over Xy is defined as the coherent ideal sheaf
DiffXé/Xg =¢" (AnnOX6Xon6 (I)) - Ox().
Here ¢! is the usual pullback of ideal sheaves. Taking norms we get the coherent ideal sheaf

DX6/X0 = OXONmK'/K (DiffX’O/XO) C Ox,.
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(2.3.4) Let Xo D Xo be an open immersion with Xy integral, normal, proper over F,. Let D € Div’(Xy) be an

effective Cartier divisor on X, which is supported in Xo\ Xo.

Definition (2.3.5) we define the complexity of D to be

Cp = 29(Xo) + 2deg(D) + 1.

Definition (2.3.6) Given a Q-coefficient Cy, we say that Cy is tame if its pullback along any curve C — Xj is
tame, see (B.2.2).

We say that the (wild) ramification of Cy is bounded by D if there is a connected étale covering ¢ : X[, — Xp
such that ¢*(Co) is tame and such that O, (—D) C Dy /%, where XJO is the normalization of Xg in k(X}).

(2.3.7) Consider an nonempty open subscheme Xy C ]P’gq and an effective Cartier divisor Dy € Div* (]P’g) (F=F,)
with support equal to (P[‘qu\X)F.

Lemma (2.3.8) Let Cy be a Q-coefficient on Xy of rank r which is pure of weight 0 and with ramification of C
bounded by D. Let @ be the number field generated by the coefficients of x,(C, T) for z € |Xp| with

deg(z) < 4r° |log, (87 deg(z) deg(D) + 477) | .

Then for every n and every z € Xo (Fyn), Tr (Fy,Co) is in Q.

Proof. We prove the lemma by induction on n that for z € | Xy| with deg(z) < n, x.(C, T) € Q[{f]. Consider a point
x with deg(z) = n such that

n> 477 |log, (8 ndeg(D) + 417)|.

Let z € A]gq C qu be an open subscheme with
qu = Spec (Fy [T1,..., T4]) .

The point z gives rise to a homomorphism F, [T, ..., T4} = Fg. We choose an embedding z — Alq = Spec (Fy[T])
and a lifting
¢ :F [T1,..., T = Fy[T]

with deg (¢ (T;)) < n (1 < i< d) asin (2.2.5). By projective completion we get a morphism 1) : ]P’Iqu — IP’]gq of degree
less than n extending the map x — Xj.

Consider the curve C'= 1~!(Xp) and the divisor D¢ = ¢*(D) on P}. By | , Proposition 4.8] the ramification
of the sheaf 1* (C) is bounded by D¢. Clearly Cp, < 2ndeg(D) + 1 by our assumption on n. By | , Theorem
5.6] the coefficients of fy«¢,(z) are contained in the field generated by the coefficients of the fy-¢, (%) with z € Cand

deg(2) < 4r* |log, (47°Cp,,) | -
The latter coefficients are contained in @) by induction, since we have
47? |log, (41%Cp.) | < n

by our assumption on n = deg(x). O
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(2.3.9) For general scheme, since Xj is normal, we can assume it is integral by taking a connected component. By
Noetherian induction, we may replace Xy by a dense open subscheme. Thus by using Noether Normalization (cf.
[ , Tag 0CBL]) we can assume that there is a closed immersion X < A' Xp, Y with ¥ an open subscheme of
Ad, such that Xy — Y is finite étale.

W take Cy as an object of D? (Al XF, Y), concentrated in degree 0. We fix a nontrivial character ¢ : F, — @Z and
we let F(Cy) € D?(A! xp, Y) be the corresponding Fourier-Deligne transformation of 4.Cy over the base Y, then
F(Co) is concentrated in degree -1. By (2.3.8) we get a the trace field Qr(c,) for Co. Then using trace formula and

the Fourier inversion formula | ] we can prove (1.3.3) also holds for Cy.

3 (2)-Skeleton Sheaves

In this section, let X denote a normal, geometrically connected scheme of finite type over F,. Let @ be an
algebraic extension of Q; with ring of integers Z and C is a @Q-coeflficient. The idea of associating a @-coeflicient
with its family of restrictions to curves on X can be formalized by introducing the notion of a @-skeleton, the

terminology is introduced in | ]

3.1 Skeleton

(3.1.1) The set Cqg(X). Say that two given Q-coeflicients on X are equivalent if their semi-simplifications
coincide. Let Cg -(X) be the set of equivalence classes of @-coefficients on X of rank r. Obviously, Cg .(—) is a
contravariant functor.

Recall that in (A.1.13), for a given Q-coefficients C we can define a map: |X| — P, (Q,). Let £,(X) be the
product HI X| P, with one copy of P, for every closed point of X. We define a map from Q-coefficients to £,(X),
obviously it factors through Cg (X) since characteristic polynomial is determined up to the semi-simplification.

If X,oq is normal this map is injective by the Cebotarev density theorem. Briefly, Cebotarev density theorem
tell us that in a finite quotient of the Galois group, every element arises from a Frobenius conjugacy class, and if
the identity on every Frobenius element passing to every elements, and use a general fact about representations
of groups over fields of characteristic zero, we can identify lisse sheaves (up to semi-simplification) with the map

defined above.

(3.1.2) Let us denote Cu(X) as the set of pairs (C,¢), where C'is a smooth curve over kand ¢ : C — X is a
k-morphism. A @-skeleton of rank ris defined as an element of the equalizer S, (X) defined by the diagram below,

where the arrows represent the arrows, which are composed of restriction and semi-simplification arrows.

Sq.r(X) (\—> HCECU(X) Con(0) —/——= Hc,aecu(x) Cor ((Cxx C),0q)
PR
CQ,T(Xa Q)

(3.1.3) For every z € |X|, the map x, : Cg.»(X) = £,(X) defined by sending z € | X| to x4(C) extends to Sg ~(X) as
follows. For each z € | X]|, we choose a curve C, € Cu(X) such that C; — X is a closed immersion near z. The map
Xz : S@,(X) — L(X) defined by x.(C) = x2(Cc,), where C = (Cc) cecu(x) € Sq,r(X), is well-defined, injective,
and satisfies x, 0 Sq = x,. In particular, according to the Cebotarev theorem, the map Sq : Co (X) — Sq.(X) is

injective.
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(3.1.4) The trace field Q¢ of a @-skeleton C is defined as the sub-Q-extension of @ generated by the coefficients
of x4(C,T), z € |X| (equivalently, by Qc. for C' € Cu(X)). We say that a @Q-skeleton C is t-pure of weight w
(respectively, pure of weight w, algebraic) if Co for C € Cu(X) satisfy the corresponding properties. Furthermore,
the direct sum of two skeletons is defined in an obvious manner, and a skeleton is said to be irreducible if it cannot

be written as the direct sum of two non-zero skeletons.

(3.1.5) We say that a Q-skeleton C is tame if the C¢, for C'€ Cu(X), are tame in the usual sense of curve, see
(B.2.2). We define the pullback f*C of a @-skeleton C by a k-morphism f: ¥ — X as follows:

(I'C)c,p) = Cepony, (€0 € Cu(Y))

We say that C is tame along f: Y — X if f°C is tame.

3.2 Geometric Skeleton

Definition (3.2.1) 1. An alteration of X is a morphism f: X’ — X which is proper, surjective, and generically

finite étale.

2. A smooth pair over k is a pair (Y, Z2) in which Y is a smooth k-scheme and Z is a strict normal crossings

divisor on Y; we refer to Z as the boundary of the pair. Note that Z = () is allowed.

3. A good compactification of X is a smooth pair (X, Z) over k with X projective (not just proper) over k, together
with an isomorphism X = X\ Z.

4. Let X — X be an open immersion with dense image. Let D be an irreducible divisor of X with generic point
7. Let C be a Qg-coefficient on X. We say that C is docile along D if the action of the inertia group of n on C

tamely ramified and unipotent.

(8.2.2) If X is a good compactification of X with boundary Z, then a Q,-coefficient on X is tame (resp. docile) if

and only if it is so with respect to each component of Z. Namely, this follows from Zariski-Nagata purity.

Proposition (3.2.3) (] ], Theorem 4.1). There exists an alteration f: X’ — X such that X’ admits a good

compactification. (Beware that X’ is not guaranteed to be geometrically irreducible over £.)

Proposition (3.2.4) For any Q,-coefficient C on X, there exists an alteration f: X’ — X such that X’ admits a

good compactification and f*€ is docile.

Proof. Indeed, C arises from a scalar extension of a smooth Z\-sheaf H,, where Z, is the ring of integers of a finite
extension @y of Q; inside Q,. By considering A as the uniformizer of Z,, we can take the étale cover trivializing
Hy/ A, ie. the étale covering associating to the kernel of the representation (which is normal and open). Then
use the fact that the kernel of the homomorphism GL(r, Z)) — GL(r, Z\/ ) is a pro-f-group, so it cannot contain
nontrivial pro-p-subgroups for p # £. So we prove it’s tame.

To prove the action is unipotent. We prove it’s quasi-unipotent by the usual argument of Grothendieck: the
eigenvalues of Frobenius form a multiset of length at most r := rank(C) which is stable under taking p-th powers,
so this multiset must consist entirely of roots of unity. To upgrade from quasi-unipotence to unipotence, it suffices

to further trivialize the action by consider GL(r, Zy/ A™) for some m. O
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Remark (3.2.5) The proof above also shows that any Q,-coefficient C on X is tame by a connected étale cover.

(3.2.6) Recall that a pro-finite group is said to be almost pro-£ if it has an open pro-¢-subgroup, and in this case
the open pro-¢-subgroup can be chosen to be normal by conjugation. A topological group is termed topologically
finitely generated if there exists a dense finitely generated subgroup.

The Galois description even tells us that if @) is a finite extension of Qg, for any C € Cq, (X), there exists a
family of Galois covers X, — X, n > 1 (the étale covers trivializing H,/ A") such that

(1) For all z € | X,,| , xo(C, T) = (1= T)"[\"] ,n>1;

(2)m1(X)/IL is an almost pro-¢-group, topologically of finite type, where Il := 1, 5, 71 (X;).

Lemma (3.2.7) Let £ and F be Q,-coefficients on X which are companions, then & is tame (resp. docile) if and
only if F is.

Proof. For any Q,-coefficient £ on X, we have (B.2.6)

Xe(€) = xe(X)rank(€) — Y n(z) Swan,(£),
zEX\ X
and & is tame iff er)?\x n(z) Swan,(£) = 0, but by (A.1.10) x.(C) is the order of vanishing of L(EY,T) at
T = oo. O

(3.2.8) Therefore, we will say that a Q-skeleton C is 1-geometric if for every subscheme Y C X, there exists an
1—geom

alteration Y — Y that C is tame along Y — Y, and we will denote S, ™" (X) C Sq (X) as the corresponding
subset. The canonical restriction map Sq : Cg ~(X) = Sg,-(X) therefore factors through Sq : Co (X)) — Ség_rgeom(X).

(3.2.9) We will say that a @-skeleton is geometric if it satisfies (3.2.6) for a finite extension @) of Q, inside @, and

we will denote g™ (X) C Sg_rgeom(X) as the corresponding subset. The canonical restriction map Sq : Cg, (X) —

Sq,+(X) therefore factors through Sq : Cq(X) — S§7™ (X).

Theorem (3.2.10) For any algebraic C € S%ffeom (X) , the trace field Q¢ is a finite extension of Q.
')

Proof. See | , Remark 3.10]. This alternatively from Theorem (4.1.1). O

4 V. Drinfeld’s Main Theorem

4.1 Structure of the Proof

Theorem (4.1.1) (] , Theorem 2.5))
Let @ be a finite extension of Q. The canonical restriction map Sq: Cg (X) — Slergeom(X) is bijective.

Drinfeld’s proof goes in three steps,

(1) every geometric Q-skeleton arises from a @-coefficient (Lemma (4.1.2)),

(2) every 1-geometric @-skeleton is geometric over a dense open subset U C X (Lemma (4.1.3)),

(3) if a 1-geometric @-skeleton coincides with a (-coefficient over a dense open subset, then it is actually a
@Q-coefficient (Lemma (4.1.4)).

The proofs of these lemmas rely on the Galois description of the category of Q-coefficients.
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Lemma (4.1.2) (after M. Kerz) The canonical restriction map Cq,(X) — Sg" (X) is bijective.

,T

Lemma (4.1.3) (after G. Wiesend, M. Kerz-A. Schmidt, cf. in particular | , §3, §4]) For any C € Sé}geom(X),

there exists a non-empty open subset U C X such that C|, € S5, (U).

Lemma (4.1.4) For any non-empty open subset U C X, the following diagram (where the arrows are the canonical

restriction maps) is Cartesian

CQ,T()() , Sclnggcom()()

I |

S5 (U) — S5E(D)

4.2 Proof of Lemma (4.1.2)

Let C be a geometric @-skeleton of rank r over X. We need to construct a continuous morphism p : 71 (X) —
GL(r, Q) such that det (1 — p (F,) T) = xz(C, T) for all z € |Xp|.

Let II be as in (3.2.6)(2). Since 71 (X)/II is topologically of finite type, so the topological space

H := Hom (m (X)/II, GL,(Z)) = lim Hom (m1(X)/IL, GL, (Z/ A")),
equipped with the induced topology gien by the product of discrete topologies, it is compact.

For z € | Xo|, let H, C H be the subset of representations p : w1 (X)/II — GL(r, Z) such that det (1 — p (F,) T) =
Xz(C, T). We want to show that ﬂze\x\ H, # 0. By compactness and since H, is closed, it suffices to show that
for any finite subset ' C [X|, (,cp Hz # 0. According to Theorem | , Theorem 6.1, Bertini Argument], there
exists ¢ : C — X € Cu(X) and a section F — C such that the induced morphism 71 (C) — 71 (X) — 7 (X)/II is
surjective. Let ¢ € |C| and p¢ : m1(C) — GL (Cec) be the representation associated with Co. We want to show the
representation po : m1(C) — GL (Ce.) factors through px : 71 (X)/II — GL (Cce).

Ky :=ker (m1(C) = m(X) = m(X)/1I) .

Then it suffices to show p(Kp) is trivial. Since Ky is normal in 71 (C) and the action of w1 (C) on C¢. is semi-simple,

the action of K11 on C¢, is also semisimple by Clifford’s theorem.

To show that it is trivial, it suffices to demonstrate that it is unipotent or, equivalently, that det (1 — pc(9) T| Cee) =

(1= T)" for g € Ky1. Using the notation from (3.2.6), if C,, — C'is the Galois covering corresponding to the inverse
image of m (X,) in m1(C), we have from (3.2.6)(1) that x.(C,T) = (1 — T)"[A\"] for ¢ € |C,|. Therefore, by

Cebotarev density and continuity of p¢,
det (1 —pc(g) T | Cee) = (1 — T)" [A"] for g € 71 (Ch).

Now, according to the definition of Il in (3.2.6)(2), we have Kn = (1,5, 71 (Cy). Therefore, the representation
pc:m(C) = GL (Ce.) factors through px : m1(X)/II — GL (C¢.). By construction, we get a px € Hy.

4.3 Proof of Lemma (4.1.3)

1. We can assume that for all C'€ Cu(X),Cc¢ is tame.
By replacing X with a dense open subset and defintion of 1-geometric, we can assume that C is tame by a
connected étale covering as in (3.2.2). Clearly, if X’ — X is an étale covering and C is a @-skeleton over X, then C

is 1-geometric (resp. geometric) if and only if C|y, is 1-geometric (resp. geometric). Thus to prove (4.1.3), we can
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assume that for all C'€ Cu(X),Cc¢ is tame.

2. Elementary fibration.
By replacing X with a non-empty open subset and & with a finite extension, we can assume | , XI, Prop.

3.3] that X is an elementary fibration, i.e., it factors as follows:

X e—

N

with f: X — S projective, smooth, geometrically irreducible of relative dimension 1, X < X an open immersion

Wy S

with dense image in each fiber, X\ X — S finite and étale, and S smooth and geometrically irreducible over k. Let
1 be the generic point of S. By making a base change via an étale open subset S — S, we can further assume that

f: X — S admits a section g: S — X.

We want to construct a sequence of étale coverings X,, — X,n > 1 satisfying (3.2.6). We will proceed by

induction on the dimension of X.
The case where X is a curve is tautological. We therefore assume that X is of dimension d > 2.

3. Definition of Ny 5 C m (X5).

For each s € S, choose a geometric point s above g(s). Since the tame fundamental group 7} (X5) is topologically
finitely generated | , XII1.2.12], it has only finitely many (open) subgroups of bounded index. In particular,
the intersection N}, ; C 7y (X5) of all open subgroups of index < |GLT (Z/ )\n)’ is still an open subgroup. Let
Ny C 1 (Xp) be the inverse image of N}, ; C mf (X;) under the canonical projection 71 (X5) — 7} (Xy).

4. Ny 5 C m (X5) is normal.

Since ker (7 (X5) — 74 (X)) is normalized by the action of m1(n) on m (X,,) D m (Xj) via the section m () —
71 (X,) induced by g: S — X, and since N, ; C 7f (Xy) is characteristic, N, ; C 71 (X)) is a normal subgroup. Let
Ny = Ny xgmi(n) Cm (Xy) = m1 (X5) xgm1(n); it is an open, normal subgroup of m; (X;,).

Since S is normal, m; commutes with limit, so 7 (X)) = limycgm (X xg V), where the limit is taken over all
non-empty Zariski opens V C S. By replacing S with a non-empty open, we can assume that N, , contains the
kernel of p : m (X;)) = m1(X), and thus, by setting N,, := p(N,, ), we have N, , = p~! (N,).

Let X,, — X be the Galois (connected étale) covering corresponding to N, C 71 (X). For a closed point s € |9,
let S(s) := Spec (Og;5) be the strict henselization and X5 := X x g.S5). We have 7} (X(5)) ~ 7} (X5) by [ , VIII

2.10]. The theory of specialization of the tame fundamental group [ , XIII] provides a commutative diagram
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T (Xﬁ) _— 71'1(X) — m (Xg)

™ (X) /Ny — ™1 (X) /Ny —— m1(X)/ Ny 1 (X5) /Ny s

By definition of Y, -, N, 5, sps (ML, ;) C N, 5, the commutativity of the diagram shows that 7 (’)V(ng) C ker (¢).
In particular, Cx,| % _ is trivial modulo A", i.e., the representation of (S(ng) on Cx, s mod A" factors through

m ()N(ns) — m1(s). But by the induction hypothesis, there exists a Galois covering S, — S for ¢*C as in (3.2.6) (1).
Any connected component X,, of X,, X g S, then provides a Galois covering for C as in (3.2.6) (1).

As it stands, the argument does not work because the open set by which we must replace S to ensure that Ny,
contains the kernel of p : m; (X,;) = m1(X) depends on n. Therefore, it needs some modification:

1. We apply it as it is for n = 1.

2. This allows us to reduce to the case where the Cc mod A, C € Cu(X) are trivial, and thus, in the above
argument, the tame fundamental group can be replaced in the argument above by its pro f-completion 7} (X5) —

) (0

7r¥) (X5) for which the specialization maps m; ’ (Xz) — m; ' (X5) are isomorphisms, and we now use | , XIII]

1—— 79 x) — 7d(x) — mn) — 1

11— 79 () — 7T (X)) — m(9) — 1

where 7T¥](—) is the notation for the quotient by the characteristic subgroup ker (71'1 (X5) — 71'%[) (Xﬁ)).

3. In this setup, the group N%% N(Z) x m(n) C Wge] (X,) = ng) (X57) x m1(n) contains the kernel of p :
7T¥] (Xy) — ﬂga(X), and therefore we can define N[n : (Ngf),,) C 7T£Z] (X) and take the inverse image of N via
m(X) — 7r1 (X ) without shrinking S. Furthermore, the open subgroups m (X,,) = m (S(R) Np~t(m (Sy)) satisfy

(X)) (X)) = w1 (X)/m1 (3(”) x 11 (9)/m1 (Sn) = 7 (X) /N x 1(8) /71 () -

Therefore WYZ) (X5), and hence Wgé) (X5) / Np>1 N%%, is pro-£ topologically of finite type, and 71 (S)/ Np>1 71 (Sy) is
almost pro-¢ topologically of finite type by the induction hypothesis. Thus the X,, — X also satisfy (3.2.6) (2).

4.4 Proof of Lemma (4.1.4)

Let C € S§7"(U) and S € Sargeom(X) such that S|, ~ C. According to Lemma (4.1.2), we know that
C € Cq,r(U). We need to show that C extends to a lisse @-sheaf on X, still denoted by C, and for every z € X\ U,
Xz(C, T) = x4(S, T). Actually the latter condition is automatic once C extends.

Indeed, let z € X\ U. According to | , Theorem 2.15], there exists a smooth, geometrically connected curve

C over k equipped with a morphism ¢ : C'— X and a k(z)-point ¢ above z, such that ¢~!(U) # 0. In particular, C|
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and S| are two lisse @-sheaves whose semi-simplifications coincide on the non-empty open subset ¢~1(U) C C. By
the Cebotarev theorem and since C'is smooth (hence normal and we have 7 (U) — 71 (X)), their semi-simplifications
coincide on the entire curve C and, in particular, at c.

It remains to show that C extends to a lisse @-sheaf on X. Suppose it is not. By assumption, for any ¢ :
C — X € Cu(X), we know that the semi-simplification of C|;-., extends to C. Since X is smooth over &, the
Zariski-Nagata purity theorem | , X, Theorem 3.4] implies that C must be ramified along an irreducible divisor

D c X\ U. By replacing X with an open subset, we can assume that D = X\ U.

Lemma (4.4.1) (based on G. Wiesend, M. Kerz-A. Schmidt, c.f. in particular | , Lemma 2.4], | ,
Proposition 2.3]). There exists z € D and a line [, C T, X (depending on C) satisfying the following property: for
every (C,¢) € Cu(X) such that ¢~1(U) # 0 and a point ¢ € C above z such that im(7T.¢) = [,, the sheaf Cly-1(0

is ramified at c.

Proof. Assume that C arises from a scalar extension of a lisse Z-sheaf H, where Z is the ring of integers of a finite
extension Q) of Qy inside @, and pick n > 1 such that %/ \" is ramified along D.

If f: U — Uis the étale covering trivializing #/\", and f: X’ — X is the normalization of X in f: U — U,
it suffices to construct z € D and [, C T,X such that for every (C,¢) € Cu(X) as in this lemma, the covering
f: C' =X xx C— (Cis also ramified at c.

Let G be the Galois group of f: U — U, and I C G be the inertia group along D. By replacing X with X'/I, we
can assume that G = I. In particular, G is solvable since I is. Therefore, by replacing X’ — X with X'/J — X for a
subgroup J C G, we can assume that G has prime order p. By replacing X with an open subset (whose complement
has codimension greater than 2), we can assume that X’ is smooth over k. Let D' be the support of the inverse
image of D in X’. The hypothesis G = I implies that the action of G on IV is trivial, so the covering f: D' — D is
purely inseparable of degree § | |G| = p.

It suffices to construct ¢ : C'— X such that (' is smooth at f~!(¢) (the covering ¢ — C will then have only one
point above ¢ and thus be ramified). To achieve this, it suffices for [, to be transverse to H, := m(Tj-1(5)/).

1. If f = 1, it is an isomorphism. We can then take any z € D and [, ¢ T,.D.

2. If f = p, by replacing X with an open subset (whose complement has codimension greater than 3), we can
assume that D and D' are smooth and H, C T,D has codimension 1 for all z € D. Then it suffices to take z € D
and [, C T,D, I, ¢ H,. O

Let’s go back to the proof of Lemma (4.1.4). The Bertini-Poonen theorem | ] ensures the existence of (C, ¢)
with this property. Using Lemma (4.4.1), since C is lisse and semi-simple, it is a direct sum of Q,-pure sheaves
(this follows from the combination of Theorem (A.1.8) and companion conjecture for curve). The same holds for
C|¢,1(U), which ensures that C|¢,1(U)% is semisimple(Proposition (A.1.12)), so it is unramified. Since being ramified

is stable under base change, this shows that C| $=1(0) extends to C' unramified at ¢, this gives a contradiction.

5 Moduli Space and Finiteness (] , 6])

Let X be smooth separated scheme over I, of finite type over the finite field. Assume that there is a connected

normal projective compactification X C X such that X\ X is the support of an effective Cartier divisor on X.

(5.0.1) In (A.1.13), we define P, := G,,, x A""1. Let £,(X) be the product [1,x Pr with one copy of P, for every
closed point of X. It is an affine scheme over Q, which if dim(X) > 1 is not of finite type over Q. We have an
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injective map defined in (3.1.3)
K Sg, (X) = Lr(X) (Q),

(CA) cecnx) = [ [ Xxa(Cas D)
[X]

(5.1)

The existence of the moduli space of ¢-adic sheaves on X is shown in the following theorem of Deligne.

Theorem (5.0.2) For any effective Cartier divisor D € Div*t(X) with support in X\ X there is a unique reduced
closed subscheme L,(X, D) of £,(X) which is of finite type over Q and such that

L7‘(X7 D) (@Z) =K (S@Z,r(xa D)) .
To construct the (coarse) moduli space, we need Deligne’s finiteness theorem | , Theorem 2.1]:

Theorem (5.0.3) Let X be connected and D € Div'(X) be an effective Cartier divisor with support in X\ X. The
set of irreducible sheaves V € Cg, (X, D) is finite up to twist by elements of Cg, ; (F).

We give a sketch of the construction of the moduli space.

5.1 Moduli over Curves

In this section we assume that X is a curve.
Step 1. For any Vi ®---® V,, € C@N«(X7 D) and the map

(C, (F9) " = £:(0) (@),

(5.2)
(X1, Xn) P E(X1- V1@ @ Xn V).

It can be shown that this map is induced by a finite morphism between of affine schemes | , Lemma 6.2].
Then by | , Proposition A.3], we obtain the existence of a unique reduced closed subscheme L; of £.(X) ® Q,
of finite type over Q such that L; (Q,) is the image of the map (5.2).

Step 2.

By Theorem (5.0.3), there are only finitely many direct sums

Vie---eV,e C@N(X7 D) (5.3)

with V; irreducible up to twists x; — x; - Vi. Let

Ln(X, D)@E = Lr(X) ®q @é

be the reduced scheme, which is the union of the finitely many closed subschemes L; < £,.(X)®qQ, corresponding to
representatives of the finitely many twisting classes of direct sums (5.3). Clearly L,(X, D)@z (Q) =+ (C@E,T(X, D))
and L(X, D)g, is of finite type over Qy.

Step 3.
The automorphism group Aut (Q,/Q) acting on L£,(X) stabilizes s (C@N«(Xa D)) by [ , Corollary 4.9] (A
corollary of companion theorem from | ]). Using the descent Proposition | ; A.2] the scheme L(X, D)g, <

L.(X) ®g Q, over Q, descends to a closed subscheme L,(X, D) < L,.(X).
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5.2 Higher Dimension

In general case, it is easy to construct a closed subscheme L,(X, D) — L,.(X) that

L(X, D) (@) = # (Sg,.(X.D))

relying on construction for curves. However from this construction it is not clear that L,(X, D) is of finite type over
Q. Actually, we define the reduced closed subscheme L.(X, D) < L,(X) by the Cartesian square (in the category

of reduced schemes)

Ly(X, D) L(X)

HCECu(X) Ly (07 QB*(D)) R HCECu(X) ET(Q

From the definition of S.(X, D) and construction for curve we get

L(X, D) (@) = & (Sg,.(X. D).

In addition, as £.(X) = [[cecu(x) £+(C) is a closed immersion, so is £,(X, D) = [T cecu(x) Lr (C,¢*(D)) by base
change. To show that it is of finite type, see | , 6.3].

6 Application of Companion Theorem: Tannakian Cebotarev Density
Theorem (A. Cadoret)

Let X, be a smooth variety, separated and of finite type over F,. Let Cy be a semisimple @-coefficient on X,

where we fix an isomorphism ¢ : Q, = C.

(6.0.1) Given a geometric point x over 1z, recall that we define G(Cy) C GL(C,) as the Zariski closure of the
images of 71 (Xp) acting on C,. It’s easy to see that the image is independent of the choice of z. We define q>§g
as the G(Cp)-conjugacy class of the image of the geometric Frobenius F,, by the map 7 (Xp) — G(Cp). For a
subset S C | Xp| of closed points, write <I>g° i= Uges® and for every G (Cp)-invariant subset A C G (Co), write
SCA(’ = {xo S @23 C A}. In the following, we will also omit the superscript (—)°¢ from the notation.

For § C T two sets of positive integers, with 7 infinite, the upper natural density of S in T are defined as

—— #{ne S:n< N}
ook #{ne T:n< N}’

(6.1)

Theorem (6.0.2) Assume S has upper Dirichlet density 6*“(S) > 0. Then the Zariski-closure of ®g contains at

least one connected component of G (Cyp).

Firstly we prove this theorem for étale Q,-coefficient, then use companion theorem to reduce general case to the

étale case.

6.1 Etale Q,-Coefficient

For étale Q,-coefficient, Theorem (6.0.2) simply follows just from classical Cebotarev density theorem.
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Write Gy := G (Co), which we identify with the Zariski-closure of the image IIy of the continuous representation
V of m (Xo) corresponding to Cy. For every closed point gy € |Xp|, let &)ZO C IIp denote the Ilj-conjugacy class of
the image @, of a geometric Frobenius attached to zp so that the Gop-conjugacy class ®,, defined in (6.0.1) is the
Zariski-closure of E)xo.

For every closed subset C'C Gy which is a union of conjugacy classes, the subset S¢ is defined as
So = {xo € | Xo| | B4 € o N 0} . (6.2)

Without loss of generality one may assume Cj is defined over a finite extension @y of Qy. Let Z; denote the
ring of integers of Q. Fix a Ilg-stable Zy-lattice A C V] set Go (Z;) := Go (Q¢) N GL(A) and let pu: B(Go (Z;)) —
[0, |70 (Go)|] denote the Haar measure on Gy (Z¢) normalized so that p(Gf(Zy)) = 1, where B (Go (Z;)) denotes
the Borel algebra on Gy (Z;). Assume C:= ®g%*" does not contain any connected component of Gy. Since Gy (Z;)
is Zariski-dense in Go, u (C(Z)) = 0 | , Proposition 5.12]. On the other hand, since C(Z;) C Gy (Z) is
analytically closed, we have 0 < 0%(5) < & <|X0|C(Z£)) < w(C(Z)) = 0, where the last inequality is [ ,

Theorem 6.8] (using the description (6.2) of |Xol th))’ whence a contradiction.

6.2 Semisimple Q,-Coefficient

We aim to use the companion theorem to reduce the general Q,-coefficient to the case of étale Q,-coefficient.
By | , §5], A. Cadoret reformulates Theorem (6.0.2) in terms of the characteristic polynomial map attached

to Cy, so for the general semisimple Q,-coefficient, it suffices to prove:

Proposition (6.2.1) Assume that Cy is a semisimple Q,-coefficient. Then for every prime p # ¢ large enough,
there exists an isomorphism ¢’ : Q, — C and a (necessarily unique) semisimple étale Q. -coefficient C}, which is the

companion (with respect to ¢, ") of Cp.

Proof. From | , 1.3.8], one can write Cp = @y II( with Z; irreducible with finite determinant and a; €
@Zx,i € [, and Ig,%i) is the twist, see (A.1.5). By (1.6.1) (3), for every ¢ # p and isomorphism ¢/ : Q, — C and
for every ¢ € I, there exists an étale @g coefficient 7;  compatible with Z;,. What’s more, Z; o is irreducible
hence, by construction, Cjj := @ IIZ(O/ g,l “ad) is a semisimple Q-coefficient on Xy compatible with Cy. From lemma

(6.2.2) below, for p # ¢ large enough, one can furthermore choose ¢’ : Q, ~ C in such a way that the +/~1¢ (o) are

(-adic units that is C{, is an étale Q-coefficient. O
Lemma (6.2.2) Let 0 # ay,...,a.,; € C. Then for every prime ¢ large enough, there exists a field isomorphism
t': Qp ~ C such that /7! (ay), ...,/ 7! (a,) are £'-adic units.
Proof. By the Noether Normalization lemma there exists elements 1, ..., . € Q [ozl yens ,ail], algebraically inde-
pendent over Q and such that the extension Q[t,...,¢] C Q [al oo ak ] is finite. For some integer N > 1, the
extension Q [t,..., ] = Q [a1 ,-..,at!] extends to a finite extension Z[1/N] [ty, ..., t;] < Z[1/N| [al s b
Fix a prime ¢’ { N. Since Zj is uncountable, one can find ¢, ¢/, ..., tre € Zy algebralcally independent over Q,
whence an embedding Z[1/N] [t1, ..., t.] < Z¢. Localizing at the zero-ideal, one obtains a commutative diagram
Lo+ Z[1/N|[tr, ..., t;] —22 5 Z[1/N] [of?, ..., aE}]
Qv ¢ Q(t1,..., 1) finite Q(at,. .., am)
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hence, taking a connected component Ep of Q (a1, ..., am) ®q,,....1,) Qe, a commutative diagram of fields

Q(th.--,tr) finite Q(al,---yam>

Ql’ finite E@[

Let Oy denote the ring of integers of Ey. Since Z[1/N][t1,...,t;] C Z[1/N] [alﬂ, ..., is finite hence proper,

the valuative criterion of properness yields a commutative diagram

Z[1/N|[t, ..., t,] —nite 2[1/{\q [af!, ... atl])

Op Ev

where the diagonal dotted arrow is automatically injective. Eventually, using that C and Q, have the same

transcendence degree, the above diagram extends as

ZIUN [ty ... ] —2 o Z[1/N] [off, ... aEl]) Q = C
E -
Op = Ey Qu
where the right up right dotted arrow is an isomorphism. O

(6.2.3) Moreover, A. Cadoret proves Theorem (6.0.2) for any Q-coefficient without any assumption of semisim-
plicity [ , §7] using weight theory. Moreover, Theorem (6.0.2) can be deduced easily is a straightforward

consequence of the conjectural formalism of pure motives .

7 Application of the Companion Theorem: Weakly Motivic Q,-Sheaves

7.1 Definition of Weakly Motivic Q,-Sheaves

Let X be a scheme of finite type over IF,,. The set of its closed points will be denoted by |X]. Let ¢ be a prime
different from p and let Q, be an algebraic closure of Q. Let Sh (X7 @e) be the abelian category of Q,-sheaves on
X and 2 (X,Q,) = D% (X,Q;) the bounded ¢-adic derived category | , §1.2-1.3].

(7.1.1) Let us consider a map
r:|X — { subsets of @X}

Once we choose a prime £ # p, an algebraic closure Q, D Qg, and an embedding i : Q — Q,, we define a full
subcategory Shr (X, Qy, z) C Sh (X,@e) . a Qg-sheaf F is in Shr (X, @e) if for every closed point z € X, all
eigenvalues of the geometric Frobenius F, : F, — F, are in ¢(T';).

Let 2p (X, Qy, z) cC9 (X, @4) be the full subcategory of complexes whose cohomology sheaves are in Shy (X, Qy, z)
Let Kr (X, Qs z) denote the Grothendieck group of Zr (X, Qy, z)
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(7.1.2) For any field E, set
A(E) :=={fe E(t)* | f(0)=1}.
A sheaf F € Shr (X, Qy, z) defines a map

fri1X] = AGQ) = AQ), z+ det (1 — Fyt, F)
Since for any subsheaf 7/ C F we have fr = fr fr/z, we get a homomorphism Kr (X,Qy,4) — A(Q)/Xol, where
A(Q)I%ol is the group of all maps | Xo| — A(Q). This map is injective [ , Lemma 1.5] by reducing to the normal

case then using Cebotarev density theorem.

(7.1.3) By Drinfeld’s Theorem (1.5.1) and conjecture (1.3.3) (a) (proved in [ 1), if for each z € |X]| all
elements of ', are units outside of p, the subgroup Kr (X, Qy, z) C A(@)‘X‘ does not depend on the choice of £,Q,,
and 7: Q < Q,. Thus we can write simply Kt (X, Q) instead of Kp (X7 Qy, z)

Definition (7.1.4) For z € |X]|, let '™* C Q" be the set of numbers o € Q" with the following property: there

/2

exists n € Z such that all complex absolute values of a equal ¢/, where g, is the order of the residue field of z.

Let T'™°% be the set of those numbers from '™ that are units outside of p.

Since I’ s stable under Gal(Q/Q) the categories Shrmot (X,Qp,7) and Zpmer (X,Qy, 7)) do not depend on
the choice of i : Q — @e- We denote them by Shy (X, @5) and Zmot (X, @5). Similar we define categories

Shmix (X7 @5) and Dmix (X, @3). The following theorem | , VIL8] tells us that Shyix (X, @5) coincides with the
mixed f-adic sheaf defined in | , definition 1.2.2]. More precisely, by dévissage we reduce to the case where F
is simple lisse sheaf, after some twist, we then can apply | , VIL7 (i)].

Definition (7.1.5) Objects of Shyet (X, @e) (resp. Zmot (X, @5) ) are called weakly motivic Q,-sheaves (resp.

weakly motivic Q,-complexes).

As (7.1.3) is applicable to I'°* we have a well defined group

Kot (Xa @) := Krmot (X7 @) .

7.2 Grothendieck’s Yoga in %, (X, @Z)

Lemma (7.2.1) Let f: X — Y be a morphism between schemes of finite type over F,. Suppose that a Q,-sheaf M
on X has the following property: the eigenvalues of the geometric Frobenius acting on each stalk of M are algebraic

numbers which are units outside of p. Then this property holds for the sheaves R‘fi M and Rf, M.

Proof. The statement about RfiM follows from [ , XXI. Theorem 5.2.2]. In | , VIL. 5.0] Deligne
defined “T-integer” for some set of primes 7, in our case take T = {p} and use the fact that '™ = I'ix N R(q)*,
where R(q) is the integral closure of Z[1/q] in Q, so that by checking fibers we can apply | , XXI. Theorem
5.2.2]. (ii) follows from the proof of [ , Theorem 5.6] and de Jong’s result on alterations [ , Theorem
4.1]. O

Theorem (7.2.2) Let f: X — Y be a morphism between schemes of finite type over F,. Then
(i) the functor ﬁ 19 (Xv @Z) -9 (Ya@é) maps gmot (X, @Z) to -@mot (Y,@e)»
(ii) the functor f, : & (X, @Z) -9 (Y,@e) maps Zmot (X, @2) t0 Dot (Y, @5);
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(iii) the functors f* and f map Zmot (Y,@e) t0 Dot (X, @4)

Proof. (i) From | , Theorem 3.3.1] we know that fi maps Zmix (X, Q¢) t0 Zmix (¥, Q;), and (i) follows from
(7.2.1) and definition.

(ii) Similar to (i), using [ , Theorem 6.1.2]: f, maps Pmix (X, @L]) t0 Dmix (Y,@Z).

(iii) For f* the statement is obvious. For f it follows from (ii), we follow the proof in | , Théorémes de

finitude en cohomologie ¢-adique, Corollary 1.5]. Precisely, the problem is local, which allows us to assume that f
factors as X - Z % Y (with 7 a closed embedding and g smooth, purely of relative dimension n). The Poincaré
duality ¢ K = K(n)[2n] and the transitivity f = i'¢' reduce the proof to the case of i. For any L € 2 (Z,Qy), if j
is the inclusion of U = Z\X into Z, then 4,4 L is the mapping cylinder of K — j.j*K, and (iii) for i follows from
(ii). O

Theorem (7.2.3) For any scheme X of finite type over F,, the full subcategory Zmot (X, @L]) c9 (X, @g) is stable
with respect to the functor ®, the Verdier duality functor D, and the internal 2 functor.

Proof. The statement for ® is obvious. The other two statements follow from Theorem (7.2.2). O

Definition (7.2.4) Two invertible Q-sheaves A and A’ on SpecF,, are equivalent if A’A~! is weakly motivic. Let

S denote the set of equivalence classes.
The following theorem is an analogue of | , Theorem 3.4.1(i)].

Theorem (7.2.5) Let (X, @5) be the essential image of P04 (X, @g) under the functor of tensor multiplication
by 7*A (clearly Z4 (X, @4) depends only on the class of A in S'). Then

2 (X, Q) =D 24 (X. Q). (7.1)

AesS

Proof. The proof proceeds in two steps:

(i) The triangulated category 2 (X, Qy) is generated by the subcategories Z4 (X7 @4).

(ii) The subcategories Z4 (X, Q) are orthogonal to each other.
(i) By dévissage we know that the triangulated category & (X, @5) is generated by objects of the from 4C, where
i: Y Xis alocally closed embedding with ¥ normal (we take a normal open subscheme generically and for the
complement we use dimension induction) connected and C is an irreducible lisse Q,-sheaf on Y. So it remains to
show that for any such Y and C there exists an invertible Q,-sheaf A on Spec F, such that C @ 7* A1 is weakly
motivic. By [ , §1.3.6], there exists A such that the determinant of C®@7* A~ has finite order. Since C®m*A~!
is an irreducible lisse Q,-sheaf whose determinant has finite order, it is weakly motivic (and pure) by a result of
Lafforgue | , Proposition VIL7(ii)].
(ii) By the definition of orthogonality, we have to prove that if My, My € Zimet (X, Q) , 4 is an invertible Q,-sheaf
on Spec F, and Ext’ (M, @ 7 A, My) # 0 for some 4, then M; ® 7* A, My are in the same class, i.e. A is weakly

motivic. By the adjoint property, we have
EXti (Ml ®’/T*A,M2) = EXti (A,’/T*%m (Ml,MQ)) 5 (72)
hence m, s (My, M) is weakly motivic by Theorems (7.2.3) and (7.2.2)(ii). So if the LHS of (7.2) is nonzero,

then A has to be weakly motivic otherwise RHS would be 0 by the following lemma. O
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Lemma (7.2.6) Ext! (My, M) = 0 if M; belongs to Dot (X, @5) and Ms does not.

Proof. By shifting it suffices to prove Hom (M7, M) = 0. We have
Hom (M, M) ~ H°(Spec (F,) , ms Home (M, Ma)) = 0,

since m, Hzsze (My, Ma) is not in Dot (X, Q) by (7.2.1) and (7.2.3), so the eigenvalue of the geometric Frobenius
Fon H°(Spec (F,) , 7w Hzse(My, Ms)) are not in '™, but it should be Frobenius invariant. O

Corollary (7.2.7) One has

Sh (X, Q) = P Sha (X,Qp), Sha (X, Q) :=Sh (X, Q) N Za (X, Q) , (7.3)
AesS
Perv (X, @4) = @ Pervy (X, @@) , Pervy (X, @Z) := Perv (X, @4) NPy (X, @Z) , (7.4)
AeS

where S is as in Definition (7.2.4).

Proof. As Sh (X, @5) cC9 (X, @4) and Perv (X, @g) c (X7 @5) are closed under direct sums and direct summands,
then it follows from Theorem (7.2.5). O

(7.2.8) The category Pervyes (X, @Z) := Perv (X, @(g) N Dot (X,@g) is one of the direct summands in the
decomposition (7.4) (it corresponds to the trivial A). Similarly, Shye (X, Q) is one of the summands in (7.3) and
Dot (X, @5) is one of the summands in (7.1).

Proposition (7.2.9) (i) The full subcategory Zmot (X, Q) C 2 (X, Q) is stable with respect to the perverse
truncation functors 7<; and 7>;.

(i) A perverse Q,-sheaf is weakly motivic if and only if each of its irreducible subquotients is.

Proof. (i) and (ii) are from the direct sum decomposition in (7.1), (7.4). On the other way, (i) follows from
the corresponding statements for mixed sheaves in | , 5.1.6]. Precisely, “weakly motivic” is tested on the
cohomology sheaf and we just need the natural truncation to construct the perverse truncation functors.

(ii) follows from the corresponding statements for mixed sheaves in [ , 5.1.7]. Precisely, the sufficiency is
clear, and for the necessity, use [ , 5.1.3] (hypothesis of | , 5.1.3] is satisfied by (7.2.3) and (i)). O
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A Weil IT and Weights Theory

Let F, be a finite field of characteristic p > 0 and F = Fq; let ¢ denote an arbitrary prime different from p; let
Xo denote a normal, geometrically connected scheme of finite type over F, and X = Xy ®r, F. Let |Xp| denote the

set of closed points of Xg. For z € | Xp|, let k(z) denote the residue field of z and let ¢(z) denote the cardinality of

k().

A.1 (@-Coefficient

(A.1.1) Let R be a local Noetherian ring of residual characteristic ¢, and m its maximal ideal. We assume that
R is complete with respect to the m-adic topology. The category of constructible R-sheaves is the 2-limit of the
categories [ , VI (6.10)] of sheaves of R/Fmodules, where Iis an open ideal of R.

Let E be a finite extension of Q; and R be the integral closure of Z, in E. The category of constructible E-
sheaves is the quotient of the category of constructible R-sheaves by the thick subcategory of torsion sheaves | ,
1.1.1(c)].

The category of constructible Q,-sheaves is the Q,-linear 2-colimit of categories of the categories of constructible
E-sheaves, where E C Q, runs over all finite extension of Q | , 1.1.1(d)]. A constructible Q,-sheaf is said to

be lisse if it is locally of the form F ® g Q,, where F is a lisse sheaf.

(A.1.2) A Weil sheaf Gy on an algebraic scheme X, over F, is a Q-sheaf G on X together with an isomorphism
F:F(G) =g

where F'is the Frobenius automorphism F': X — X.
Following the Deligne’s setting, we will simply refer to Weil sheaves as “sheaves” . The constructible Q,-sheaves

will be called étale sheaves.

(A.1.3) We follow the notation in | ]. If @ is an algebraic extension of Q, by a Q-coefficient we mean a lisse
Weil @-sheaf.

(A.1.4) We say a Q-coefficient Cy of rank 1 on Xj is of finite order iff there exists n > 1 such that C5™ is trivial.

(A.1.5) Let pr: Xo — Spec(F,) be the structural morphism, and let £y be a rank 1 Q,-coefficient on Spec(k).
For any Q-coefficient Cy on X, the twist of Cy by L is given by Cy ® pr* L. Since Ly is determined by the image
a € @[X, we will also denote Cy ® pr* Ly as Céa). Note that Ly is a étale sheaf iff « is ¢-adic unit.

(A.1.6) The category of étale lisse Q,-sheaves is constructed by taking limits of categories of constructible locally
constant sheaves with finite coefficients in characteristic ¢, which are Galois categories. It follows that for every
geometric point z lying over z € X, the fiber C, of a lisse étale Q,-sheaf Cy is equipped with a continuous action
of the étale fundamental group m1(Xp) := 71(Xo, z) of X, and the fiber functor Cy — C, induces an equivalence
of categories between lisse étale Q,-sheaves and finite-dimensional continuous Q,-representations of 71(Xp). The
groups G(C), G(Cy) C GL(C,) respectively identify with the Zariski closure of the images of m (X), 71 (Xo) acting
on C,.

The morphisms X — Xy — Spec(FF,) induce a short exact sequence (assuming Xo is geometrically connected):

1— st (X) — 7T1(X0) — 7T1(]Fq) — 1
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Furthermore, the geometric Frobenius defines a morphism Z — m (F,) ~ 7. The category of Q,-coefficients can be
described in a similar way by replacing the étale fundamental group with the Weil group W(Xy), which is the fiber
product W(Xy) := m1(Xo) Xx,(r,) Z equipped with the topology induced by the product of the profinite topology
on 71 (X) and the discrete topology on Z.

Example (A.1.7) The data of a rank 1 Q-coefficient on Spec(F,) is equivalent to that of an element of @Z ; the
full subcategory of lisse étale Q,-sheaves on Spec(F,) corresponds to the subgroup ZZ - @[X of f-adic units.

Proposition (A.1.8) (] , 1.3.4)).
Every rank 1 Q,-coefficient on Xj is the twist of a finite Q,-coefficient. In particular, every Q,-coefficient on X

is the twist of a finite Q,-coefficient with finite determinant.
Proof. Tt follows from the Artin reciprocity law from class field theory. O

Proposition (A.1.9) (| , 0.4]).
Let Cy be a Q-coefficient on Xy. The following conditions are equivalent:
a) Co is étale;
b) det(Cy) is étale;

c) Co = S(ga), where S is a lisse étale Q,-sheaf with finite determinant and « is an f-adic unit.

Theorem (A.1.10) (Grothendieck trace formula, | D.
—d 1 ; 5\ (D ; (—n
L(X(),Co, T’) :HiZOdet (1— q F T‘ H(Xo,CO)) :HiZOdet (1—FT| H?:(X07CO)) 5
where Cj is the dual sheaf, and F is the action of geometric Frobenius.

(A.1.11) If Cy is a Qg-coefficient on Xj, then the groups G(C), G(Cy) C GL(C,) identify respectively with the
Zariski closure of the image of m (X), W(Xy) acting on C,.

Proposition (A.1.12) (Global monodromy, | , 1.3.8]).
Let Co be a Q-coefficient on Xo. The radical of G(C) is unipotent.

Proof. We have a semidirect exact sequence
1— G(C) — G(Co) &8z — 1,
and there exists a positive integer N such that the semisplit sequence
1 — G(C) — deg {(N-Z) S8 N.Z — 1.

is split. Replacing the base field by its degree N extension, we can assume N is 1. Thus we have the following

commutative diagram:

1l — m(X2) — m(Xo,2) — Z —— 1

b k]
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By property of reductive group (G(C))ap is the product of a finite group and a torus. Conisder the composition
aomop, we can show that the image of 71(Xo,z) in (G(C))ap is finite. But it must be Zariski dense by definition of
G(C), so (G(C))ap is finite and hence G(C) is semi-simple. By passing to the identity component, we get that G(C)
is unipotent.

O

Let ¥y be a finite field, F = Fl and let Xy be a normal scheme of finite type over F,. Let ¢ and ¢ be prime
numbers not dividing ¢. For brevity, we take the definition used in [ | and | ]: if @ is an algebraic

extension of Qg, by a Q-coefficient Cy we mean a lisse Weil ()-sheaf. Let C be its base change to X = Xy ®, F.

(A.1.13) Let x(C, T) :=det (1 — F,T,Co) € Q[T] be the caracteristic polynomial at a closed point z. The rank

r of C,, is independent of z, and we have a characteristic polynomial mapping:

X-(C): [ Xol = P (Qy)
z — x(C,T)

takes values in the Q-points of the Q-variety P, := G,, x A" ! of degree-r polynomials with constant term
1. The morphism (G,,)" — P, that takes (1,...,53,) to the polynomial []_, (1 — 3;t) induces an isomorphism
(Gn)" /S, — P,, where S, is the symmetric group.

(A.1.14) For a Q,-coefficient Cy, we say that Cy is algebraic if for all # € | Xy|, x. (C, T) has coefficients in the field
of algebraic numbers. Given a Q,-coefficient C; and a Qg -coefficient C and fixed an isomorphism ¢ : Q, — Q, ,
we say they are companions if for all closed points in Xy, the characteristic polynomials of Frobenius on C; , and

Ca,; coincide.

Proposition (A.1.15) Let C1,Cs be two algebraic Q,-coefficients on Xy which are companions, then
(a) If Cy is irreducible, then so is Co.

(b) C; and Cs have the same semi-simplification.

Proof. In both cases, we may assume that Xj is irreducible of pure dimension d, and by | , 1.8.10] that C1,Cs
are both pure of weight 0 and semi-simple.

In case (a), note that by Schur’s lemma, as a W(Xjy, r)-module, C; is irreducible if and only if H° (X,C) ® Ci)F
is one-dimensional. We may thus apply Lemma (A.2.6) to C} ® C1,Cy ® Ca to conclude.

In case (b), it suffices to check that any irreducible subobject F of C; (which must also be pure of weight 0 )
also occurs as a summand of C5. To this end, by Schur’s lemma again, note that F occurs as a summand of C; if
and only if H® (X, FV ® C;)? # 0; we may thus apply Lemma (A.2.6) to CY ® F,Cy ® F to conclude. O

(A.1.16) Let K be a global field, K denote a separable closure of K. In | | Serre defined strictly compatible
system of f-adic representations of Gal(K/K):

Let S be a finite set of non-archimedean primes of K. A compatible system is consisted of a continuous rep-
resentation p; of Gal(K/K) on a finite dimensional Q-vector space V;, for all ¢ { char(K). One assumes that
pe is unramified at every non-archimedean place v ¢ S whose residue characteristic is not ¢. For all such ¢, v, the
characteristic polynomial of the image py (Frob,) of Frobenius is well-defined, and the compatibility condition states
that its coefficients lie in Q and depend only on v. Clearly, this condition implies that the dimension n of Vj is
independent of £. We assume that the system is pure of weight w € Z, i.e. that the eigenvalues of py (Frob,) have

absolute value qﬁ/ ? for every complex embedding, where ¢, is the number of elements in the residue field of v.
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Example (A.1.17) Let Kis a function field. Let F, C K be its field of constants and let Xj be smooth geometrically
connected algebraic curve over F, with function field K.

We remove from X the finite set where the p, may be ramified, and fix a geometric point z of Xy. Then each
pe comes from a representation of the étale fundamental group (X, Z) which we denote again by py. Every Vy is
the stalk at z of a lisse f-adic sheaf Fy on Xy, which is pointwise pure of weight w.

The Zariski closure of p; (71 (X, Z)) is the geometric fundamental group G (Fp) (A.1.11) is semisimple(A.2.7).
Proposition (A.1.18) The dimension of the space of invariants VZG(}-O) is independent of /.

Proof. As a curve, the cohomology with compact support H: (X, F) vanishes in degrees i > 2.

For i =2 H' (X, F) is canonically isomorphic to VeG(f")(fl), where (—1) denotes Tate twist; it is therefore pure
of weight w+ 2.

In degrees i =1, by | , 3.3.1] H (X, F) has weights < w+ 2.

It follows that the dimension in question can be described as the sum of the multiplicities of all Frobenius
eigenvalues of weight w+ 2 in the virtual representation > (—1)*H¢ (X, F). By the Lefschetz trace formula (A.1.10)
this number depends only on the zeta function of (Xy, Fo), which is, by the compatibility assumption, independent
of /4. O

A.2 Weights Theory

Fix ¢ an embedding of Q, into C, Cy a Q,-coefficient.

Definition (A.2.1) 1. For z € | Xol, the multiset of --weights of Co at zis the multiset consisting of —2log, () |t()

as \ varies over the roots of x,(C, T) (counted with multiplicity).
2. Cp is t-pure of weight w if for all z € | Xp|, the multiset of t-weights of Cy at z consists of the single element w.

3. Cp is t-mixed if it is a successive extension of Q,-coefficients that are ¢-pure.

Remark (A.2.2) The definition for -mixed differs from the definiton given in | , 1.2.2 (ii)]. But they coincides
[ , 1.8.11] by the semicontinuity of weight | , 1.8.10]. Notice that we don’t require Xy to be normal by
[Dels0, 3.4.11].

Proposition (A.2.3) (semicontinuity of weight) Suppose that for some w € R, there exists an open dense
subset Up of Xy (not necessary normal) such that Co|, is t-pure of weight w. Then Cp is also t-pure of weight w.

What’s more, if Xj is irreducible and normal, Cy is irreducible and Cp| v, is t-mixed, then Cy is t-pure.

Proof. For the first argument, see | , Corollary 1.8.9], use the local monodromy of pure sheaves and dévissage.
On the other hand, we can deduce it immediately from (A.2.4). For the second argument, notice that if Xy is
normal, we have 71 (Up) — 71 (Xo), thus if Cp is irreducible, Col;, is irreducible, so Co|y;, is t-pure, then apply the
first argument. O

Proposition (A.2.4) The multiset of -weights of Cy at z € |Xp| is independent of z.

Proof. See | , Corollary 1.8.12]. On the other hand, we can also use | , VIL.6]. Tt suffices to compare two

points z,y € |Xp|. By restricting to a curve in Xy through z, y, we may assume that Xj is a curve (such a curve
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exists by Hilbert irreducibility, see | , Appendix B)); in this case, we may further assume that Cy is irreducible

and its determinant is of finite order by a twist. We may then apply | , VIL6] to deduce that Cy is t-pure of
weight 0. O
Theorem (A.2.5) (] , 3.3.4]).

Let f: Xy — Y be a finite type morphism of schemes over Z. If Cy is t-pure of weight w, then for each i, R*fCy

is mixed of weight < n+ 7.

Sketch of proof: The main theorem in [ ]. For a sketch of proof, using dévissage and a generic argument,
we reduce to the case Xy is the complement in Xy, a smooth and projective scheme of pure relative dimension 1
over Yy, of an étale finite divisor Dy over Yy, and that Cy is tamely ramified along Dy. For the curve case, we
use Rankin-Selberg method, Lefschetz pencil from | | and several results of weights theory built in [ |:
T-real sheaves, semicontinuity of weights, and monodromy. To use Rankin-Selberg method, we make induction,
and the key trick is to apply Lefschetz pencil to the tensor product of an open dense subset U, and use Kiinneth
formula, cf. | , 3.2.6].
O

Corollary (A.2.6) Suppose that X; is irreducible of pure dimension d and that Cy is a «-pure of weight 0 Q-
coefficient. Then the pole order of L(C, T) at T = ¢~ equals the multiplicity of 1 as an eigenvalue of Frobenius on
H° (X,CV).

Proof. By the Lefschetz trace formula (A.1.10), the factor ¢ = 0 contributes the predicted value to the pole order.
Meanwhile, by (A.2.5), the eigenvalues of F on H'(X,EY) for i > 0 all have absolute value at least ¢'/2, so the

corresponding factor of (A.1.10) only has zeroes or poles in the region |T] > ¢~%+1/2. This proves the claim. O
Corollary (A.2.7) If Cy is a pure Q,-coefficient on Xy, then C is semi-simple; in particular, G(C) is semi-simple.

Proof. See [ , 3.4.1(iii)]. The key is from the Hochschild-Serre spectral sequence we get a exact sequence like
H(X,CY ®C1)p — Ext (C2,C1) — H' (X, @C1)",
and by the Deligne’s purity theory [ , Theorem 3.3.1] the Frobenius invariant part can only be null. O

Use the proof quite similar to (A.2.7) (compare weights from two parts), Deligne gives another two aplications:

local invariant cycle theorem | , Theorem 3.6.1] and hard Lefschetz theorem | , 4.1].

(A.2.8) If Vis an irreducible Q,-representation of W (Xy, z), its restriction to 1 (X, 7) is a sum of non-isomorphic
irreducible representations of m (X, z) by Clifford’s theorem, permuted transitively by W(Xo, z) /m (X, 2) = Z.
Let n be the number of summands, and X; := Xy ®p, Fgn; W(Xy, ) is the inverse image in W (Xo, z) of nZ. If
S'is one of the irreducible summands of the restriction of V to 71 (X, z), use the proof of Clifford’s theorem it’s easy
to see that S is a representation of W(Xy,z) and Vis induced from Ind vag‘l’g(g)
If V (resp. S) is the corresponding Q,-Weil sheaf for V (resp. S), V is the direct image, via X7 — Xo, of S.

(A.2.9) Now let V be a semisimple representation of W(Xp,z). The quotient Z of W(Xy,z) permutes the

isomorphism classes of simple constituents of the restriction of V to w1 (X, z) by (A.2.8).
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Let A be the set of orbits, and in each orbit a, choose a representative 5. Let n(a) be the number of elements in
the orbit. If X, = Xo ®p, F @, the representation S, extends to a representation S, of W(X,, z), and S, is unique
up to torsion by a character of the quotient Z of W (X,, z). We choose the torsion so that the character det (S,) of
W (X4, z) is of finite order.

Applying (A.2.8) to the irreducible constituents of V and grouping the occurrences of S,, we obtain a decom-

position
V=, Indy " (S, ® W)

for W, a representation of W(X,, z) trivial on m (X, ). This description of V is unique, up to the following:
a) twisting S, by a finite-order character of Z = W(X,, z) /m1 (X, z), and W, by the inverse character.
b) replacing S, with its conjugate S by an element ¢ of W(Xp,z) /W (X,,z) =Z/n(a).

(A.2.10) Let’s switch from the language of group representations to that of sheaves: S, (resp. ng)) corresponds
to Sg1 (resp. S((;)l) on X,, W, corresponds to W, on Spec(F ju) ), and if p, is the projection from X, to Xo, and
pr, is the projection from X, to Spec(F juw ), then (A.2.9) becomes a decomposition of the Weil Q,-sheaf V on:

V= @pa* (Sa,l & prz Wu) . (Al)

acA

In this decomposition, the det(S,) are of finite order, and the inverse images S((Li) on X of the S[(f)1 (for a € A and

i € Z/n(a)) are irreducible Q,-sheaves that are not isomorphic to each other.

Proposition (A.2.11) (] , 1.3, 1.4])
Let Co be a Qg-coefficient. For n > 1, let k, be the extension of degree n of k=F, in k, and let p, : Xi, — Xo

be the canonical projection. Then Co|y, is irreducible if and only if Co|y is irreducible for every n > 1.

Proof. The sufficiency is trivial. Necessity follows from the discussion above. O

B Ramification at Infinity

B.1 Recall of SGA7 XIII.2

(B.1.1) Let X be an S-scheme and D be a effective divisor on X. Recall | , IT 4.2] that we say D has strict
normal crossings relative to if there exists a finite family (f;) . ; of elements in I' (X, O'x) such that D = 3. div (f;)
and the following condition is satisfied: for every point z in Supp D, X is smooth over S at z, and if we denote I(x)
as the set of ¢ € I such that fi(x) = 0, then the subscheme V((fi)iel(m)> is smooth over S and has codimension
card I(z) in X.

The divisor D is said to have normal crossings relative to S if, locally on X in the étale topology, it has strict

normal crossings.

(B.1.2) Let D be a divisor with normal crossings relative to S. We define ¥ = Supp D, U= X — Y, and denote by
1: U — X the canonical immersion. For every geometric point s of S and every maximal point y of the geometric

fiber Y3, the ring R =0 X, 18 @ discrete valuation ring.

Definition (B.1.3) Let F' be a sheaf of sets on U. We say that F'is tamely ramified on X (along D) relative to S if,

for every geometric point s of S, the following condition is satisfied: for every maximal point y of Y3, the restriction
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of F'to the fraction field K of Ox, is represented by the spectrum of an étale K-algebra L which is tamely ramified

over Ox, .

Definition (B.1.4) If F'is a sheaf of groups on U, tamely ramified on X relative to S, we denote by H} (U, F) the

subset of H'(U, F) consisting of classes of (left) torsors under F that are tamely ramified on X relative to S.

(B.1.5) Let Cy((U, X)/S) or simply C; be the category of étale coverings of U that are tamely ramified on X
relative to S.

Suppose U is connected, and let a be a geometric point of U. Let I'; be the functor that assigns, to an étale
covering U of U that is tamely ramified on X relative to S, the set of geometric points of U’ lying over a. The
functor I'; is represented by a pro-object, which is called the tamely ramified universal covering of (U, X) relative to
S, punctured at a. The group opposite to the group of U-automorphisms of the tamely ramified universal covering
is called the tame fundamental group and is denoted by 7} ((U, X)/S, a) or simply 7%(U, a) or even 7} (U). We have

a canonical surjective map (U, a) — 7%(U, a) which is an isomorphism if X is proper (cf. | , V 6.9]).
The importance of the notion of a normal crossings divisor is its role in:

Lemma (B.1.6) (Abhyankar’s Lemma,| , XIII, Prop 5.2, Cor 5.3]).

Let Y be a regular noetherian scheme, X a normal noetherian scheme, and f: X — Y a finite, flat, generically
étale map which is tamely ramified. If the support of the branch scheme %,y of f, the closed subscheme defined
by the annihilator of f,Q} /y on Y, coincides with the support of a normal crossings divisor D on Y, then

1. X is regular,

2. Bx;y = D as closed subschemes of Y, so Zx,y is a normal crossings divisor on Y,

3. for each y € #x/y and 1 € f~1(y), there is an isomorphism of ﬁ%y-algebras
O OV [T T/ (T}~ fee T = )

where fi,..., f, define the normal crossings divisor D in an étale neighborhood of y and ey, ..., e. > 1 are relatively

prime to the characteristic of k(y).

B.2 Swan Conductor

(B.2.1) Let X be a smooth k-curve and 7 a geometric point above z € | Xy|. Let U:= X\z be the complement of z
in X, X, := Spec(ﬁ/’,}’x) be the spectrum of the henselianization of the local ring Ox , at z, and X(3) := Spec(Ox z)
be the spectrum of the strict henselization defined by z. Let Uy = U Xxx X, and Uy = U xx X(z. Let
I == m(Ug) C Dy :=m (U(I)) denote the inertia and decomposition groups of X at x. We have a short exact

sequence that splits:
1—-IL,— D, — m(z) =1,
And we denote by P, C I, the unique p-Sylow subgroup of I, (the wild inertia group) and by I\ := I,/ P, (the tame

inertia group). There exists a 7 (k)-equivariant isomorphism I} = (Z/Zp)(—l).

(B.2.2) Let C be a Qg-coefficient on X. To C’|U(x) is associated a representation of D, on a finite-dimensional
Q-vector space C;. This allows us to define the local Swan conductor Sw,, (C) of C at x. The group D, is equipped
with a decreasing filtration Igc’\),/\ > 0 by closed normal subgroups (higher ramification subgroups-| , S68,
Chap. IV]) such that:
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- ﬂX<A IS?)\ 10\) ﬂA ER 1( =0,

-1, = 1&0) C D, is the inertia group,

—-P, = I;OH C I;O) is the wild inertia group, i.e., the p-Sylow subgroup of I;O), where we define 18‘ R
el € 1

Let us denote C;° as the I,-semisimplification of C,. If W C C* is a nontrivial simple submodule of P,, there
12 = 0 and WE # 0. We call A the slope of W, and (C”)IMH/(C;S)IY) is the

exists a unique A > 0 such that W'
sum of simple P,-submodules of C3* with slope A\. With these notations, we define

Swo(C) = 3 Adim ((c;S)fi-* "

A>0

/e

(B.2.3) If Sw,(C) = 0, we say that C is tamely ramified at 2. We also denote the slope A of C at zas o (C;) = a,(C)

which C, is the corresponding Galois representation.

(B.2.4) If the representation C, is irreducible, by the definition we have
Sw,(C) = dim(C;) - a(C;)  (V irreducible).
Then for C, not necessarily irreducible, by additivity of Swan conductor, we have

Sw,(C) < dim(Cy) - a(Cy). (B.1)

(B.2.5) Let X be a smooth curve over k which is algebraically closed, X < X its smooth compactification,
and C a Qg-coefficient on X. The local Swan conductors are related to the Euler-Poincaré characteristic x.(C) :=
Yiso(—1)"dim H(X, C) through the Grothendieck-Ogg-Shafarevich formula:

Theorem (B.2.6) (] , Theorem 2.2.1.2]).

Xc(C) = rank(C)x(X) — Z x) Sw,(C

€ X\ X

Sometimes it is convenient to globalize the definition of the Swan conductor by considering the effective divisor
Sw(C) =3 exmxSwa(C)[a], X C X is a smooth compactification.

Definition (B.2.7) Let D € Div' (X) be an effective Cartier divisor. The subset Cg, (X, D) C (g, ,(X) is defined
by the condition Sw(V) < D. If Vlies in Cg, ,(X, D), we say that its ramification is bounded by D

(B.2.8) It’s shown in [ , Proposition 3.9] that for any V € Cg, ,(X) there is a divisor D with V € Cg, (X, D).
Example (B.2.9) If X is an affine curve, then we have H(X,C) = 0, then by (B.2.6) and (B.1), we get
dim H(X,C) < r(b1 )+ Y aulC ) (B.2)

B.3 Dimension > 2

In higher dimensions, there are several possible definitions of the notion of tameness at infinity. Let X < X be a

normal compactification. We say that a Q,-coefficient C on X is tamely ramified at a point z € X\ X of codimension
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1 if the representation of m; (X(@)) corresponding to C\X(ﬁ) is. We say that C is tame along X\ X if it is tame at
every point z € X\ X of codimension 1.

When X is smooth over k, the following conditions:
1. (curve)-tameness: For every smooth curve C over k and every morphism C — X, C| is tame.
2. (divisor)-tameness: For every normal compactification X < X, C is tamely ramified along X\ X.

are equivalent, and we will simply say that C is tame.

When X admits a smooth compactification X < X such that X\ X is a normal crossings divisor, C is tame if and

only if it is tame along X\ X.
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