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Abstract

Motivated by the idea that local systems should only exist for some “motivic reason”, P. Deligne formulated
the companion conjecture [Del80, Conjecture 1.2.10] for normal schemes. Based on L. Lafforgue’s proof for curve,
we will introduce various works around this conjecture (by P. Deligne, V. Drinfeld, H. Esnault, M. Kerz and A.
Cadoret), in particular a proof of the companion conjecture for smooth schemes using “skeleton sheaves”.
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1 Introduction

1.1 ℓ-Independence and Motives

(1.1.1) Let Fq be a finite field with characteristic p, F a separable closure of Fq, ` a prime number 6= p. Let X0

be a scheme separated and of finite type over Fq and X = X0 ×Fq F. Consider cohomology groups with compact
supports Hi

c (X,Qℓ). They are finite dimensional Qℓ-vector spaces, zero for i > 2dim X0, acted by Galois group
G = Gal(F/Fq). Consider the `-adic numbers

Tr (g,H∗
c (X,Qℓ)) =

∑
(−1)i Tr

(
g,Hi

c (X,Qℓ)
)

(1.1)

for g ∈ G. A natural question is : is this sum independent of the choice of `?

(1.1.2) Take g = 1, then the sum (1.1) is the Euler-Poincaré characteristic (with compact supports)

χc (X,Qℓ) =
∑

(−1)i dim Hi
c (X,Qℓ) .

Let F be the geometric Frobenius, by Grothendieck’s trace formula (A.1.10)

Z (X0,T) =
∏

det
(
1− FT,Hi

c (X,Qℓ)
)(−1)i+1

,

we have χc (X,Qℓ) = −degZ (X0,T)，thus follows the independence of `.

(1.1.3) Consider the Betti numbers

bi (X,Qℓ) = dim Hi (X,Qℓ),
bi

c (X,Qℓ) = dim Hi
c (X,Qℓ).

If X0 is proper and smooth, we can use Weil conjectures and make induction on dimension of X0 by choosing a
Lefschetz pencil to get that, for each i, bi (X,Qℓ) is independent of `, and actually coincides for any Weil cohomology
[KM74, Corollary 1].
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(1.1.4) We consider

Pi
ℓ(T) := det

(
1− TF | Hi (X,Qℓ)

)
,

Pi
c,ℓ(T) := det

(
1− TF | Hi

c (X,Qℓ)
)
.

Since deg
(
Pi
ℓ

)
= bi (X,Qℓ) ,deg

(
Pi

c,ℓ

)
= bi

c (X,Qℓ), the independence of ` of bi
c (X,Qℓ) follow from the indepen-

dence of Pi
ℓ(T) and Pi

c,ℓ(T). In general, the independence of ` of Pi
ℓ(T) and Pi

c,ℓ(T) is unknown. But P. Mannisto
and M. Olsson [MO] show the independence for dimension of X0 ≤ 2.

(1.1.5) Suppose that X0 and Y0 are both proper and smooth and that we are given a Fq-morphism f : Y0 → X0.
For each integer i ≥ 0 and each ` 6= p, we have an induced map (because f is proper) which is Galois-equivariant

(f∗)i,ℓ : Hi
c (X,Qℓ)→ Hi

c (Y,Qℓ).

It is conjectured that the characteristic polynomials of F on both the kernel and cokernel of (f∗)i,ℓ have Z-coefficients,
independent of ` 6= p.

Now let’s introduce the formalism of “Motives”.

(1.1.6) Let Fq be a finite field with characteristic p. Let Sch/Fq be the category of normal schemes separated
and of finite type over k. Grothendieck expected that attached to any X0 ∈ Sch /Fq, we have a graded semisimple
Q-linear rigid abelian ⊗-category M(X0,Q), with End(1) = Q if X0 is connected.

Grothendieck expected several properties satisfied by M(X0,Q) [EK11, §2]. Let’s clarify two properties here:

1. For any prime number ` different from p, there is a faithful Qℓ-linear ⊗-functor

Rℓ : M(−,Q)⊗Qℓ → Sh (−,Qℓ),

where X 7→ Sh (X0,Qℓ) is the étale stack of lisse Qℓ-étale sheaves over Sch /Fq.

2. There is a contravariant functor from the category of smooth projective schemes f : Y0 → X0 to motives
h(Y0) ∈ M(X0,Q) such that

Rℓ ◦ h(Y) ∼=
⊕

n
Rnf∗Qℓ.

(1.1.7) For any field F ⊃ Q, let us define M(X0,F) to be the pseudo-abelian envelope [Stacks, Tag 09SF] of
M(X0,Q)⊗ F.

(1.1.8) Suppose that Grothendieck standard conjecture D holds, i.e. numerical equivalence coincides with Qℓ-
cohomological equivalence for every ` 6= p. Then motives for numerical equivalence have `-adic realizations for
every ` 6= p. According to U. Jannsen [Jan92], the category of motives for numerical equivalence is abelian and
semisimple (actually, the proof only uses Wedderburn’s theorem and linear algebra). For a given variety proper
and smooth over a finite field, the Künneth components of the diagonal are rationally algebraic, represented by
universal (i.e., independent of ` 6= p) Q-linear combinations of the graphs of iterates of Frobenius [KM74, Theorem
2, 1)]. So the individual cohomology groups Hi

c (X,Qℓ) and Hi
c (Y,Qℓ) are the `-adic realizations of motives. By U.

Jannsen [Jan92], the corresponding motivic kernels and cokernels of f∗ exist. Our `-adic kernels and cokernels are
the `-adic realizations of these motivic kernels and cokernels. Then (1.1.4) follows by [KM74, Theorem 2, 2)].

3

https://stacks.math.columbia.edu/tag/09SF


Conjetcture (1.1.9) The essential image of

Rℓ : M
(
X0,Qℓ

)
→ Sh

(
X0,Qℓ

)
consists of direct sums of irreducible sheaves V which are pure of integral weight, and such that the eigenvalues of
geometric Frobenius Fx for all closed points x ∈ |X0| are `′-adic units for all prime numbers `′ 6= p.

The motivic expectation above motivates P. Deligne’s companion conjecture [Del80, 1.2.10].

1.2 L. Lafforgue’s Langlands Theorem

(1.2.1) We follow the notation in [Cad18]. If Q is an algebraic extension of Qℓ, by a Q-coefficient we mean a
lisse Weil Q-sheaf. Similarly, by a Qℓ-coefficient we mean a lisse Weil Qℓ-sheaf. A Weil Qℓ-sheaf C0 is said to be
algebraic if for any x in any X (Fqn), Tr (Fx, C0) is algebraic number.

(1.2.2) Using the global Langlands correspondence (between cuspidal automorphisms and irreducible Qℓ-coefficients
with finite determinant), L. Lafforgue proved a theorem for smooth curves [Laf02, Theorem VII.6]:

Theorem (1.2.3) Let X0/Fq be a smooth curve, let V0 be a Qℓ-coefficient on X0 with determinant of finite order.
Then:

(i) There exists a field QV0 which is a finite extension of Q and for all x ∈ |X0|, we have χx(V0,T) :=

det (Id− TFx | Vx) ∈ QV0
[T], where F is the geometric Frobenius.iii90o

(ii) For an arbitrary, not necessarily continuous, automorphism σ ∈ Aut
(
Qℓ/Q

)
, there is an irreducible lisse

Qℓ-Weil sheaf Vσ
0 on X, called σ-companion, with determinant of finite order such that

χx(Vσ
0 ,T) = σ (χx(V0,T)) ,

where σ acts on the polynomial ring Qℓ[T] by σ on Qℓ and by σ(T) = T.
(iii) V0 is pure of weight 0 .

This was already expected by P. Deligne in [Del80] since at that time the Langlands correspondence was available
for n = 2, ` 6= p by the work of V. Drinfeld.

(1.2.4) On higher dimensional schemes, unfortunately, there seems to be no analogue of the Langlands correspon-
dence (even conjectural) which would provide geometric origins for lisse sheaves on higher-dimensional varieties,
except in the case of weight 1 where some results are known.

1.3 P. Deligne’s Companion Conjecture

(1.3.1) Motivated by the idea that local systems should only exist for some “geometric reason”, P. Deligne
conjectured [Del80, Conjecture 1.2.10] that every Qℓ-coefficient C0 on a separated normal scheme of finite type over
Fq admits a Qℓ′ -companion C′0.

Definition (1.3.2) Let C0 be a Qℓ-coefficient and let C′0 be a Qℓ′ -coefficient. Fixing two isomorphisms ι : Qℓ
∼→ C

and ι′ : Qℓ′
∼→ C, we say that C′0 is a Qℓ′ -companion of C0 if for any x ∈ |X0|, χx(C,T) coincides with χx(C′,T), i.e.

ι′ det (Id− TFx | C′x) = ιdet (Id− TFx | Cx).
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Conjetcture (1.3.3) Let X0 be a normal scheme of finite type over Fq, ` 6= p a prime, and C0 an irreducible
Qℓ-coefficient on X0 whose determinant has finite order.

(a) For some number field QC0
, C0 is QC0

-algebraic: for all x, we have χx(C,T) ∈ QC0
[T]. The QC0

will be called
trace field of C0.

(b) C0 is pure of weight 0: for every algebraic embedding of Qℓ into C, for all x, the roots of χx(C,T) in C all
have complex absolute value 1 (one can avoid having to embed Qℓ into C by (a)).

(c) For all x, the roots of χx(C,T) have trivial λ-adic valuation at all finite places of λ of Q not lying above p.
(d) For every place λ of Q above p, for all x, the roots of χx(C,T) have λ-adic valuation at most 1

2 rank(C) times
the valuation of #κ(x) (the order of the residue field).

(e) For every prime `′ 6= p, there exists a Qℓ′ -coefficient C′0 which is irreducible with determinant of finite order
and which is a companion of C0.

Remark (1.3.4) 1. If a given coefficient C0 is pure, its trace field QC0
⊂ Q.

2. By Proposition (A.1.8), after some twist we can always assume the determinant of the lisse sheaf has finite
order.

3. The uniqueness of `′-adic companions up to semi-simplification is unique by applying the Čebotarev density
theorem to mod-`n representations as in the proof of [Laf02, Proposition VI.11].

4. By [Laf02], part (b) of (1.3.3) holds iff the following holds: for any Qℓ-coefficient C0 pure of weight 0, there
exists an number field Q such that for all x, we have χx(C,T) ∈ Q[T]. Actually, if part (b) of (1.3.3) holds,
then [Laf02] proves that C0 is pure of weight 0. Conversely, replace C0 by its semi-simplification and assume its
irreducibility, there there exists a Qℓ-coefficientW0 of rank 1 and of weight 0 on SpecFq such that det(C0⊗W0)

is of finite order. Then the statement follows from the fact that Tr(Fx, C0 ⊗W0) = Tr(Fx, C0) · Tr(Fx,W0).

1.4 P. Deligne’s Proof of Finiteness

In Chapter (2), we will give a proof of part (a) of conjecture (1.3.3) due to P. Deligne himself [Del12]. We
provide a sketch of proof here.

(1.4.1) Firstly for curve case, we consider an absolutely irreducible Qℓ-coefficient C0 on a smooth curve X0

defined over Fq. WLOG, we can assume that X0 is affine. The “complexity” of X0 will be measured by the integer
b1(X) := dim H1

c(X,Qℓ). We assume that C0 is algebraic (1.2.1). Our goal is to determine an integer N, depending
on the “complexity” of (X, C), such that E is generated by the Tr(Fx, C0) for x in X0(Fqn) with n ≤ N and it contains
all traces of C0. Let log+q (a) = max(0, logq(a)). If C is tamely ramified, we obtain N of the form

O
(
log+q (b1(X))

)
+ O(1)

where the implicit constants in O depend on the rank of C0. For a general C0, we replace b1(X) with b1(X) +∑
s∈S αs(C), where αs(C) is the slope (B.2.3) which measures the wildness of the ramification of C at s.

(1.4.2) For the general case, P. Deligne uses several dévissages and use N. Katz’s estimation of Betti number
[Kat01]. But in section (2.3) we will also give an alternative proof by H. Esnault and M. Kerz [EK12], which uses
ramification theory to provide a suitable bound N and then applies a Deligne-Fourier transformation to get the
result.
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1.5 V. Drinfeld’s Theorem

Using L. Larfforgue’s result for curve, V. Drinfeld proves the companion conjecture for smooth case.

Theorem (1.5.1) Let X0 be a smooth scheme over Fq. Let Q be a finite extension of Q. Let λ, λ′ be nonar-
chimedean places of Q prime to p and let Qλ,Qλ′ be the corresponding completions. Let C0 be a Qλ′ -coefficient on
X0 such that for every closed point x ∈ X0 the polynomial χx(C,T) has coefficients in Q and its roots are λ-adic
units. Then there exists a Qλ-coefficient on X0 compatible with C0.

Remark (1.5.2) 1. By P. Deligne’s conjecture [Del80, Conjecture 1.2.10], the above theorem should hold for
normal scheme.

2. By the definition, the Qλ-coefficient is defined over some finite extension L/Qλ, and from the proof we will
know that L is only determined by the rank of C0 and Qλ [Dri18, Lemma 2.7].

(1.5.3) The key object we will define in Chapter (3) is 2-skeleton sheaf. This concept is used by V. Drinfeld
[Dri18] and implicitly present in [Del12], but the terminology is introduced in [EK12] and credited to L. Kindler.
Roughly speaking, 2-skeleton sheaf of a given smooth scheme X0 is the data of coefficients arising from all curves in
X0. The idea is to compare the skeleton sheaf with local system arising from X0, and in smooth case, we can find a
subset of skeleton sheaf on X0 called geometric skeleton (3.2) which is bijective to the coefficients arising from X0.

The proof proceeds in three steps: the first step (4.1.2) is using compactness argument given by M. Kerz, the
second step (4.1.3) will use the results of tame fundamental group from [SGA1] , and the third step (4.1.4) is more
geometric and uses Bertini theorem.

1.6 Summary

Given two isomorphisms ι : Qℓ
∼→ C and ι′ : Qℓ′

∼→ C, combining all the results above, now we get the companion
theorem:

Theorem (1.6.1) Let X0 be a smooth variety, separated and of finite type over Fq. Let C0 be an irreducible
Qℓ-coefficient with finite determinant. Then:

1. C0 is pure of weight 0;
2. QC0 is a finite extension of Q;
3. There exists an étale Qℓ-coefficient C′0 which is compatible (with respect to ι, ι′) with C0.

We will give two applications of the companion theorem in chapter (6), (7).

(1.6.2) The Čebotarev density theorem plays a fundamental part in arithmetic geometry in that it often enables
to reduce problems about Qℓ-local systems on X to problems about semisimple Qℓ-local systems on points. We
will prove Tannakian Čebotarev density theorem for semisimple coefficient in chapter (6). For étale coefficient,
the theorem just follows from classical Čebotarev density theorem, and A. Cadoret reformulates Theorem (6.0.2)
in terms of the characteristic polynomial map attached to C0 [Cad18, proposition 4.4] and proves the theorem for
semisimple coefficients using companion theorem.

(1.6.3) The second application is to the theory of weakly motivic sheaves introduced by V. Drinfeld [Dri18]. P.
Deligne defined Dmix

(
X,Qℓ

)
as the category of mixed Qℓ-complexes in [Del80, §6.2.2], and by [BBD82] and [Del80],
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Dmix
(
X,Qℓ

)
is stable under “six operators”. Using the companion theorem (1.6.1), we define the category of weakly

motivic sheaves Dmot
(
X,Qℓ

)
in (7) and prove it’s also stable under “six operators”.

2 P. Deligne’s Proof of Finiteness
In [Del12], P. Deligne proved the Conjecture (1.3.3)(b):

Theorem (2.0.1) Let X0 be a scheme of finite type over Fq. If C0 is an algebraic Weil Qℓ-sheaf on X0, then there
exists a finite extension Q ⊂ Qℓ of Q such that for every n and every x ∈ X0 (Fqn), χx(C,T) ∈ Q[T].

Remark (2.0.2) Using the identity between formal power series:

log det(1− ft,V) = −
∑
n≥1

Tr (fn,V)
tn

n ,

where V is a linear representation and f is an endomorphism of V. For the theorem above, it is equivalent to show
that for every n and every x ∈ X0 (Fqn), Tr (Fx, C0) is in Q.

2.1 Curve Case

(2.1.1) Let X0 be a smooth, affine curve over a finite field, and let X be the scalar extension to algebraic closure,
let C0 be an algebraic Qℓ-coefficient of rank r. Denote:

N0 = 2 log+q
(
2r2

(
b1(X) +

∑
αx(C)

))
,

N = bN0c+ 2r,

where the function log+q denotes sup
(
0, logq

)
.

In this section, we prove:

Proposition (2.1.2) Let Q be the extension of Q in Qℓ generated by the Tr (Fx, C0) for x in X0 (Fqn) with n ≤ N.
Then, for any n and any x ∈ X0 (Fqn), Tr (Fx, C0) is in Q.

Lemma (2.1.3) Let αi be k distinct nonzero numbers. If for some suitable m, the λi satisfy∑
λi α

r
i = 0 for m ≤ r < m + k,

then all the λi are zero.

Proof. We can rewrite the equation as: ∑(
λi α

m
i
)
· αs

i = 0 for 0 ≤ s < k

and since the Vandermonde determinant det(αs
i ) is non-zero, the solution for λi can only be zero.

(2.1.4) Let F0,G0 be two semisimple Qℓ-coefficients of rank r over X0. Let αx(F0,G0) := αx(F0 ⊕ G0) =

sup (αx(F0), αx(G0)).
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Proposition (2.1.5) If for every integer n ≤ N and every x ∈ X0 (Fqn), we have

Tr (Fx,F0) = Tr (Fx,G0)

then F0 is isomorphic to G0.

Proof. Applying (A.2.9) and (A.2.10) to F0 ⊕ G0, we obtain decompositions:

F0 =
⊕
a∈A

pa∗ (Sa,1 ⊗ pr∗aWa)

G0 =
⊕
a∈A

pa∗ (Sa,1 ⊗ pr∗aW ′
a) .

(2.1)

In (2.1), for each a ∈ A, there is an integer n(a) ≥ 1, such that Sa,1 is a Qℓ-coefficient on Xa := X0 ⊗Fq Fqn(a) ,
Wa and W ′

a are Qℓ-Weil sheaves on Spec
(
Fqn(a)

)
, pa and pra are the projections from Xa to X0 and Spec

(
Fqn(a)

)
,

respectively.
Let S(i)a,1 denote the image of Sa,1 under the i-th power of Frobenius F ∈ Gal

(
Fqn(a)/Fq

)
, and we omit the

subscript 1 to indicate its inverse image of Xa to X.
According to (A.2.10), the Sa,1, Wa, and W ′

a in (2.1) satisfy:
(i) det (Sa,1) is of finite order.
(ii) The S(i)a (where a ∈ A and i ∈ Z/n(a)) are irreducible Qℓ-coefficients on X, pairwise non-isomorphic.
(iii) For each a, either Wa or W ′

a is nonzero.
Since by definition S(i)a is a direct factor of either F or G, we have

αx

(
S(i)a

)
≤ sup (αx(F), αx(G))

Let A(n) denote the set of a in A such that n(a)|n.

Key Claim (2.1.6) If n > N0 (2.1.1), the functions on X0 (Fqn)

ta,i : x 7−→ Tr
(

Fx,S(i)a,1

)
(a ∈ A(n), i ∈ Z/n(a))

are linearly independent.

Proof of Claim: The functions ta,i take values in a number field E ⊂ Qℓ. Let us embed E into C to treat them as
functions with complex values. The idea of the proof is to show that they are almost orthogonal, in L2 (X0 (Fqn)).

According to [Laf02, VII 6 (i)], S(i)a,1 is pure of weight 0. The complex conjugate of ta,i is thus given by
x 7→ Tr

(
Fx,S(i)∨a,1

)
, and the inner product 〈tb,j, ta,i〉 =

∑
ta,i(x)−tb,j(x) is

〈tb,j, ta,i〉 =
∑

Tr
(

Fx,Hom
(
S(i)a,1,S

(j)
b,1

))
.

By the trace formula, this sum is the trace of the Frobenius F ∈W (F/Fqn) on the compact cohomology:

〈tb,j, ta,i〉 =
∑

(−1)k Tr
(

F,Hk
c

(
X,Hom

(
S(i)a ,S(j)b

))
.

Since X is affine, H0
c is trivial. The “dominant” term is given by H2

c: it equals qn if (a, i) = (b, j) and is zero
otherwise. Precisely, H2

c

(
X,Hom

(
Sj

b,Si
a

))
' Hom

(
Si

a
∣∣
X , S

j
b

∣∣∣
X

)∨
(−1).

The promised almost orthogonality comes from the fact that the k = 1 term is of order O
(
qn/2) for large n.

More precisely, since Hom
(
S(i)a1 ,S

(j)
b1

)
is pure of weight 0, the eigenvalues of F on its H1

c are of absolute value qn/2

or 1 by Weil II, using (B.2), the k = 1 term is bounded in absolute value by qn/2 times

dim H1
c ≤ dimS(j)b · dimS(i)a ·

(
b1(X) +

∑
αx(F ,G)

)
. (2.2)
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Suppose there exists a linear dependence relation
∑
λb,j tb,j = 0. Let a, i be such that

∣∣∣λa,i

∣∣∣ is maximal among

all
∣∣∣λb,j

∣∣∣. Dividing by λa,i, we can assume that λa,i = 1 and
∣∣∣λb,j

∣∣∣ ≤ 1 for b ∈ A(n) and j ∈ Z/n(b). We then have
the following:

0 =
〈∑

λb,j tb,j, ta,i

〉
=

∑
b,j

λb,j 〈tb,j, ta,i〉

= qn + remainder,
(2.3)

where the absolute value of the remainder is bounded by∑
b,j

∣∣∣λb,j

∣∣∣Tr
(

F,H1
c

(
X,Hom

(
S(i)a ,S(j)b

))
≤ qn/2 · 2r2

(
b1(X) +

∑
αx(F ,G)

)
.

The assumption on n ensures that |remainder| < qn, leading to a contradiction.
□

Corollary (2.1.7) Let F be the Frobenius of W(k/Fqn). If n > N0 and Tr(Fx,F0) = Tr(Fx,G0) for x ∈ X0(Fqn),
then

Tr (F,Wa) = Tr (F,W ′
a)

for every a ∈ A(n).

Actually, the decompositions (2.1) yield the identity between trace functions:∑
ta,i Tr (F,Wa) =

∑
ta,i Tr (F,W ′

a)

and we apply Lemma (2.1.6).

Let’s go back to (2.1.5). We need to show that for each a, and for F the geometric Frobenius of W(k/Fqn(a)),
F has the same multiset of eigenvalues on Wa and W ′

a. According to the claim and the assumption of proposition
(2.1.5), if n is divisible by n(a) and

bN0c+ 1 ≤ n ≤ N = bN0c+ 2r,

then we have
Tr

(
Fn/n(a),Wa

)
= Tr

(
Fn/n(a),W ′

a

)
.

There are at least b2r/n(a)c such values of n, and Wa and W ′
a have dimension at most br/n(a)c. It remains to

apply the lemma (2.1.3) to the set of all eigenvalues of F onWa andW ′
a. More precisely, if the set of all eigenvalues

of F on Wa (resp. W ′
a) is {αi} (resp. {βj}), then

∑
αi−

∑
βj = 0, by lemma (2.1.3) there must exist some αi = βj,

then we can make induction.

(2.1.8) Proof of Proposition (2.1.2).
By semisimplifying C0, we can assume that C0 is semi-simple, so that we can apply (2.1.5). Let E be an

appropriately large Galois extension of Q in Qℓ containing all Tr (Fx, C0) for any x in X0 (Fqn). To show that all
trace contained in E must contained in Q, we need to show that for σ ∈ Gal (E/Q), the Tr (Fx, C0) are fixed by σ.
This is equivalent to

Tr (Fx, C0) = Tr (Fx, σ (C0)) . (2.4)

By assumption, (2.4) holds if x is in X0 (Fqn) with n ≤ N. Using (2.1.5) and the fact that αx (C0) = αx (σ (C0))[Del12,
(2.2.1)], we conclude that C0 is isomorphic to σ (C0). The assertion follows from this.
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Variant (2.1.9) Let’s keep the assumptions and notations from (2.1.5). Suppose q : X′ → X is a connected étale
covering of X on which the inverse images of F and G have tame ramification. For any Qℓ-sheaf H on X, whose
inverse image on X′ has tame ramification, the morphism

q : H∗(X,H)→ H∗ (X′, q∗H) .

is injective, since its composition with Trq is multiplication by the degree of the covering. Therefore, we have

dim H1
c(X,H) ≤ dim H1

c (X′,H) ≤ rank(H) · b1 (X′) (2.5)

If we repeat the arguments that prove (2.1.5) using this estimate instead of (2.5), we obtain:

Variant (2.1.10) Let N′
0 := 2 log+q

(
2r2b1 (X′)

)
and N′ := bN′

0c + 2r. If for every integer n ≤ N′ and every
x ∈ X0 (Fqn), we have

Tr (Fx,F0) = Tr (Fx,G0) ,

then F0 is isomorphic to G0.

Similarly, if F0 is as in (A.1.12), and its inverse image under q : X′ → X has tame ramification, then σ (F0)

has the same property: after a finite extension of the base field Fq, we can assume that q : X′ → X arises from
q0 : X′

0 → X0, and we apply the fact that if F is tamely ramified, then σ(F) is also tamely ramified (this follows
from the Grothendieck trace formula (A.1.10) and (B.2.6)) . By repeating the same arguments that prove (A.1.12),
we obtain the following:

Variant (2.1.11) Let Q be the extension of Q in Qℓ generated by the Tr (Fx,F0) for x in X0 (Fqn) with n ≤ N′,
where N′ is as in (2.1.10). Then, for every n and every x ∈ X0 (Fqn), Tr (Fx,F0) is in Q.

2.2 General Case

(2.2.1) For the proof of the theorem, we can reduce to the case that
(i) X0 is an affine, smooth, irreducible scheme equipped with an étale morphism ϕ : X0 → Ak

0 to an affine space
over Fq;

(ii) C0 is lisse, irreducible, and det (C0) is of finite order.
Actually the scheme X0 in the theorem admits a partition into locally closed irreducible parts Fi satisfying:

(i) and such that C0|Fi
is lisse. It suffices to treat each

(
Fi, C0|Fi

)
separately. We can then treat each irreducible

subquotient of C0|Fi
separately and twist it to satisfy (ii).

Now let’s state the main proposition who implies the main theorem (2.0.1).

Proposition (2.2.2) If the integer n is sufficiently large, for any x ∈ X0(Fqn), the trace Tr(Fx, C0) is contained in
the extension of Q in Qℓ generated by the traces Tr(Fy, C0) with y ∈ X0(Fqm) and m < n.

If this proposition holds, then N is chosen such that for all integers n > N, the condition of being “sufficiently
large” holds, then we can deduce by induction that every trace Tr(Fx, C) is contained in the extension of Q generated
by the traces Tr(Fy, C0) with y in X0(Fqm) for m ≤ N. This extension is finite, therefore giving the main theorem
(2.0.1).
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(2.2.3) Let’s choose a generator of Fqn over Fq. This choice defines an Fqn -point x′ of the affine line A1
0 over Fq,

whose Galois conjugates under Gal(Fqn/Fq) are all distinct.

Lemma (2.2.4) If y is an Fqn -point of A1
0, there exists an Fq-morphism P : A1

0 → A1
0, i.e., a polynomial P ∈ Fq[T],

that sends x′ to y and has degree ≤ n− 1.

Proof. The σx′, for σ ∈ Gal(Fqn/Fq), are n distinct points on the affine line. Hence, there exists a unique polynomial
P ∈ Fqn [T], of degree ≤ n− 1, such that for each σ, it takes the value σy at σx′, which implies that P sends x′ to y.
Its uniqueness guarantees its invariance under Galois, which implies that it belongs to Fq[T].

Corollary (2.2.5) There exists an Fq-morphism P : A1
0 → Ak

0, with coordinate polynomials of degree ≤ n − 1,
that sends x′ in A1

0(Fqn) to ϕ(x) in Ak
0(Fqn).

Proof. This follows by applying Lemma (2.2.4) to each coordinate of ϕ(x).

(2.2.6) Let us fix P as in (2.2.5). Consider X′′
0 as the fiber product of X0 and A1

0 over Ak
0. Since ϕ(x) = P(x′),

there exists x̄ ∈ X′′
0(Fqn) that maps to both x and x′. We denote by Z0 the connected component of X′′

0 containing
x̄ (which is a curve):

Z0 X′′
0 A1

0 x̄ ∈ Z0 (Fqn)

X0 Ak
0 x ∈ X0 (Fqn)

P̃

φ′′

P

φ

(2.6)

The morphism ϕ′′ is étale (since ϕ is étale and use base change), and its degree over the generic point of A1
0 is

at most equal to the degree D of ϕ. Let k0 be the field of constants of the curve Z0 over Fq. The degree d of k0
over Fq is less than or equal to D because Z0 has degree at most D over A1

0, and d divides n since Z0 has a point
over Fqn . We extend the base field from Fq to Fqd , and let Z1 (resp. X1) be the connected component of Z0 ⊗Fq Fqd

(resp. X0 ⊗Fq Fqd) containing x̄ (resp. x):

x̄ : Spec (Fqn) Z1 Z0

x : Spec (Fqn) X1 X0

Spec
(
Fqd

)
Spec (Fq)

=

∼

P̃

(2.7)

The curve Z1 over Fqd is smooth and absolutely irreducible (cf. [Stacks, Tag 04KZ]).
Finally, we extend the base field from Fqd to F = Fq to obtain X and Z. For X, there exists a connected étale

covering q : X′ → X such that the monodromy group of q∗C is a pro-`-group (for the proof, see (3.2.4)). Let Z′ be
a connected component of the inverse image Z′′ of the étale covering X′ of X:

Z′ Z′′ Z

X′ X

(2.2.7) Proof of Proposition (2.2.2).
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The inverse image of C on Z′ is tamely ramified. We aim to apply (2.1.11) to the curve Z1 over Fqd , to Z′ → Z,
and to the inverse image C1 of C on Z1. Let’s estimate b1(Z′).

The composed F-morphism
X′ → X φ−→ Ak

is affine. Therefore, it factors through a closed embedding X′ ↪→ Ak+k′ , and there exists a family of A′ equations of
degree ≤ b defining X′ in Ak+k′ .

The graph ΓP of P : A1 → Ak is defined in A1+k by k equations of degree ≤ n− 1. The fiber product, computed
over F, of X′ → Ak and P : A1 → Ak is the intersection, in A1+k+k′ , of the inverse images of X′ ⊂ Ak+k′ and
ΓP ⊂ A1+k. Therefore, it is defined in A1+k+k′ by A := A′ + k equations of degree ≤ sup(B,n− 1).

According to Katz [Kat01], this yields an upper bound on the sum of Betti numbers of this fiber product, and
hence on b1(Z′), since Z′ is a connected component of the fiber product.

For n > B, we have A equations of degree ≤ n− 1 in an affine space of dimension k + k′ + 1, and Katz gives

b1 (Z′) ≤ 6.2A(An + 3)k+k′+1. (2.8)

Let us define, as before,
N′

0 = 2 log+qd

(
2r2b1 (Z′)

)
and

N′ = bN′
0c+ 2r.

The bound (2.8) is polynomial in n, and d is bounded by D. As soon as n is sufficiently large, we have
n
d > N′.

Let us assume that n is large enough for this inequality to hold. From (2.7) , we have Tr (Fx̄, C1) = Tr (Fx, C0).
According to (2.1.11), this trace is contained in the field generated by Tr (Fy, C1) for y in Z1 (Fqm) with d|m and
m
d (the degree of Fqm over Fqd) at most equal to N′. Moreover, by (2.7), these traces are also Tr

(
Fy, P̃∗C0

)
for y

in X0 (Fqm) with m
d ≤ N′. We have

Tr
(

Fy, P̃∗C0
)
= Tr

(
FP̃(y), C0

)
.

And Tr (Fx, C0) belongs to the field generated by Tr (Fy, C0) with y ∈ X0 (Fqm) and m
d ≤ N′ < n

d , and thus m < n.
This proves (2.2.2).

2.3 An Alternative Proof [EK11] (By H. Esnault and M. Kerz)

(2.3.1) In [EK11] H. Esnault and M. Kerz use ramification theory to give an alternative proof which is a bit more
direct than N. Katz’s estimation of Betti number. By (1.3.4) (3) , it’s enough to consider the case Qℓ-coefficient
pure of weight 0.

(2.3.2) Let X′
0 → X0 be a finite dominant morphism with X0 normal noetherian integral and X′

0 integral.
And K ⊂ K′ is the corresponding extension of the fields of rational functions. Consider the diagonal morphism
φ : X′

0 → X′
0 ×X0

X′
0. Let I ⊂ OX′

0×X0
X′

0
be the coherent ideal sheaf of the diagonal.

Definition (2.3.3) The homological different of X′
0 over X0 is defined as the coherent ideal sheaf

DiffX′
0/X0

= φ∗
(

AnnOX′
0×X0

X′
0
(I)

)
⊂ OX′

0
.

Here φ♮ is the usual pullback of ideal sheaves. Taking norms we get the coherent ideal sheaf

DX′
0/X0

= OX0
NmK′/K

(
DiffX′

0/X0

)
⊂ OX0

.
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(2.3.4) Let X0 ⊃ X0 be an open immersion with X0 integral, normal, proper over Fq. Let D ∈ Div+(X0) be an
effective Cartier divisor on X0 which is supported in X0\X0.

Definition (2.3.5) we define the complexity of D to be

CD = 2g(X̄0) + 2 deg(D) + 1.

Definition (2.3.6) Given a Qℓ-coefficient C0, we say that C0 is tame if its pullback along any curve C → X0 is
tame, see (B.2.2).

We say that the (wild) ramification of C0 is bounded by D if there is a connected étale covering φ : X′
0 → X0

such that φ∗(C0) is tame and such that OX0
(−D) ⊂ DX̄′

0/X0
, where X′

0 is the normalization of X0 in k (X′
0).

(2.3.7) Consider an nonempty open subscheme X0 ⊂ Pd
Fq

and an effective Cartier divisor DF ∈ Div+
(
Pd
F
)

(F = Fq)
with support equal to (Pd

Fq
\X)F.

Lemma (2.3.8) Let C0 be a Qℓ-coefficient on X0 of rank r which is pure of weight 0 and with ramification of C
bounded by D. Let Q be the number field generated by the coefficients of χx(C,T) for x ∈ |X0| with

deg(x) ≤ 4r2
⌊
logq

(
8r2 deg(x)deg(D) + 4r2

)⌋
.

Then for every n and every x ∈ X0 (Fqn), Tr (Fx, C0) is in Q.

Proof. We prove the lemma by induction on n that for x ∈ |X0| with deg(x) ≤ n, χx(C,T) ∈ Q[t]. Consider a point
x with deg(x) = n such that

n ≥ 4r2
⌊
logq

(
8r2n deg(D) + 4r2

)⌋
.

Let x ∈ Ad
Fq
⊂ Pd

Fq
be an open subscheme with

Ad
Fq = Spec (Fq [T1, . . . ,Td]) .

The point x gives rise to a homomorphism Fq [T1, . . . ,Td]→ Fqn . We choose an embedding x ↪→ A1
Fq

= Spec (Fq[T])

and a lifting
φ : Fq [T1, . . . ,Td]→ Fq[T]

with deg (φ (Ti)) < n (1 ≤ i ≤ d) as in (2.2.5). By projective completion we get a morphism ψ : P1
Fq
→ Pd

Fq
of degree

less than n extending the map x→ X0.
Consider the curve C = ψ−1(X0) and the divisor DC = ψ∗(D) on P1

F. By [EK12, Proposition 4.8] the ramification
of the sheaf ψ∗ (C) is bounded by DC. Clearly CDC ≤ 2n deg(D) + 1 by our assumption on n. By [EK12, Theorem
5.6] the coefficients of fψ∗C0

(x) are contained in the field generated by the coefficients of the fψ∗C0
(z) with z ∈ C and

deg(z) ≤ 4r2
⌊
logq

(
4r2CDC

)⌋
.

The latter coefficients are contained in Q by induction, since we have

4r2
⌊
logq

(
4r2CDC

)⌋
< n

by our assumption on n = deg(x).
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(2.3.9) For general scheme, since X0 is normal, we can assume it is integral by taking a connected component. By
Noetherian induction, we may replace X0 by a dense open subscheme. Thus by using Noether Normalization (cf.
[Stacks, Tag 0CBL]) we can assume that there is a closed immersion X0 ↪→ A1 ×Fq Y with Y an open subscheme of
Ad

Fq such that X0 → Y is finite étale.
W take C0 as an object of Db

c
(
A1 ×Fq Y

)
, concentrated in degree 0. We fix a nontrivial character ψ : Fp → Q×

ℓ and
we let F(C0) ∈ Db

c
(
A1 ×Fq Y

)
be the corresponding Fourier-Deligne transformation of i∗C0 over the base Y, then

F(C0) is concentrated in degree -1. By (2.3.8) we get a the trace field QF(C0) for C0. Then using trace formula and
the Fourier inversion formula [BBD82] we can prove (1.3.3) also holds for C0.

3 (2)-Skeleton Sheaves
In this section, let X denote a normal, geometrically connected scheme of finite type over Fq. Let Q be an

algebraic extension of Qℓ with ring of integers Z and C is a Q-coefficient. The idea of associating a Q-coefficient
with its family of restrictions to curves on X can be formalized by introducing the notion of a Q-skeleton, the
terminology is introduced in [EK12].

3.1 Skeleton

(3.1.1) The set CQ,r(X). Say that two given Q-coefficients on X are equivalent if their semi-simplifications
coincide. Let CQ,r(X) be the set of equivalence classes of Q-coefficients on X of rank r. Obviously, CQ,r(−) is a
contravariant functor.

Recall that in (A.1.13), for a given Q-coefficients C we can define a map: |X| → Pr
(
Qℓ

)
. Let Lr(X) be the

product
∏

|X| Pr with one copy of Pr for every closed point of X. We define a map from Q-coefficients to Lr(X),
obviously it factors through CQ,r(X) since characteristic polynomial is determined up to the semi-simplification.

If Xred is normal this map is injective by the Čebotarev density theorem. Briefly, Čebotarev density theorem
tell us that in a finite quotient of the Galois group, every element arises from a Frobenius conjugacy class, and if
the identity on every Frobenius element passing to every elements, and use a general fact about representations
of groups over fields of characteristic zero, we can identify lisse sheaves (up to semi-simplification) with the map
defined above.

(3.1.2) Let us denote Cu(X) as the set of pairs (C, φ), where C is a smooth curve over k and φ : C → X is a
k-morphism. A Q-skeleton of rank r is defined as an element of the equalizer SQ,r(X) defined by the diagram below,
where the arrows represent the arrows, which are composed of restriction and semi-simplification arrows.

SQ,r(X)
∏

C∈Cu(X) CQ,r(C)
∏

C,C′∈Cu(X) CQ,r
(
(C×X C′)red

)
CQ,r(X,Q)

Sq

(3.1.3) For every x ∈ |X|, the map χx : CQ,r(X)→ Lr(X) defined by sending x ∈ |X| to χx(C) extends to SQ,r(X) as
follows. For each x ∈ |X|, we choose a curve Cx ∈ Cu(X) such that Cx → X is a closed immersion near x. The map
χx : SQ,r(X) → Lr(X) defined by χx(C) = χx(CCx), where C = (CC)C∈Cu(X) ∈ SQ,r(X), is well-defined, injective,
and satisfies χx ◦ Sq = χx. In particular, according to the Čebotarev theorem, the map Sq : CQ,r(X) → SQ,r(X) is
injective.

14

https://stacks.math.columbia.edu/tag/0CBL


(3.1.4) The trace field QC of a Q-skeleton C is defined as the sub-Q-extension of Q generated by the coefficients
of χx(C,T), x ∈ |X| (equivalently, by QCC for C ∈ Cu(X)). We say that a Q-skeleton C is ι-pure of weight w
(respectively, pure of weight w, algebraic) if CC for C ∈ Cu(X) satisfy the corresponding properties. Furthermore,
the direct sum of two skeletons is defined in an obvious manner, and a skeleton is said to be irreducible if it cannot
be written as the direct sum of two non-zero skeletons.

(3.1.5) We say that a Q-skeleton C is tame if the CC, for C ∈ Cu(X), are tame in the usual sense of curve, see
(B.2.2). We define the pullback f∗C of a Q-skeleton C by a k-morphism f : Y→ X as follows:

(f∗C)(C,ϕ) = C(C,f◦ϕ), (C, φ ∈ Cu(Y))

We say that C is tame along f : Y→ X if f∗C is tame.

3.2 Geometric Skeleton

Definition (3.2.1) 1. An alteration of X is a morphism f : X′ → X which is proper, surjective, and generically
finite étale.

2. A smooth pair over k is a pair (Y,Z) in which Y is a smooth k-scheme and Z is a strict normal crossings
divisor on Y; we refer to Z as the boundary of the pair. Note that Z = ∅ is allowed.

3. A good compactification of X is a smooth pair (X,Z) over k with X projective (not just proper) over k, together
with an isomorphism X ∼= X\Z.

4. Let X ↪→ X be an open immersion with dense image. Let D be an irreducible divisor of X with generic point
η. Let C be a Qℓ-coefficient on X. We say that C is docile along D if the action of the inertia group of η on C
tamely ramified and unipotent.

(3.2.2) If X is a good compactification of X with boundary Z, then a Qℓ-coefficient on X is tame (resp. docile) if
and only if it is so with respect to each component of Z. Namely, this follows from Zariski-Nagata purity.

Proposition (3.2.3) ([Jon96], Theorem 4.1). There exists an alteration f : X′ → X such that X′ admits a good
compactification. (Beware that X′ is not guaranteed to be geometrically irreducible over k.)

Proposition (3.2.4) For any Qℓ-coefficient C on X, there exists an alteration f : X′ → X such that X′ admits a
good compactification and f∗E is docile.

Proof. Indeed, C arises from a scalar extension of a smooth Zλ-sheaf Hλ, where Zλ is the ring of integers of a finite
extension Qλ of Qℓ inside Qℓ. By considering λ as the uniformizer of Zλ, we can take the étale cover trivializing
Hλ/λ, i.e. the étale covering associating to the kernel of the representation (which is normal and open). Then
use the fact that the kernel of the homomorphism GL(r,Zλ)→ GL(r,Zλ/λ) is a pro-`-group, so it cannot contain
nontrivial pro-p-subgroups for p 6= `. So we prove it’s tame.

To prove the action is unipotent. We prove it’s quasi-unipotent by the usual argument of Grothendieck: the
eigenvalues of Frobenius form a multiset of length at most r := rank(C) which is stable under taking p-th powers,
so this multiset must consist entirely of roots of unity. To upgrade from quasi-unipotence to unipotence, it suffices
to further trivialize the action by consider GL(r,Zλ/λm

) for some m.
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Remark (3.2.5) The proof above also shows that any Qℓ-coefficient C on X is tame by a connected étale cover.

(3.2.6) Recall that a pro-finite group is said to be almost pro-` if it has an open pro-`-subgroup, and in this case
the open pro-`-subgroup can be chosen to be normal by conjugation. A topological group is termed topologically
finitely generated if there exists a dense finitely generated subgroup.

The Galois description even tells us that if Qλ is a finite extension of Qℓ, for any C ∈ CQλ
(X), there exists a

family of Galois covers Xn → X,n ≥ 1 (the étale covers trivializing Hλ/λn) such that
(1) For all x ∈ |Xn| , χx(C,T) ≡ (1− T)r [λn]

,n ≥ 1;
(2)π1(X)/Π is an almost pro-`-group, topologically of finite type, where Π :=

⋂
n≥1 π1 (Xn).

Lemma (3.2.7) Let E and F be Qℓ-coefficients on X which are companions, then E is tame (resp. docile) if and
only if F is.

Proof. For any Qℓ-coefficient E on X, we have (B.2.6)

χc(E) = χc(X) rank(E)−
∑

x∈X\X

n(x)Swanx(E),

and E is tame iff
∑

x∈X\X n(x)Swanx(E) = 0, but by (A.1.10) χc(C) is the order of vanishing of L (E∨,T) at
T =∞.

(3.2.8) Therefore, we will say that a Q-skeleton C is 1-geometric if for every subscheme Y ⊂ X, there exists an
alteration Y′ → Y that C is tame along Y′ → Y, and we will denote S1−geom

Q,r (X) ⊂ SQ,r(X) as the corresponding
subset. The canonical restriction map Sq : CQ,r(X)→ SQ,r(X) therefore factors through Sq : CQ,r(X)→ S1−geom

Q,r (X).

(3.2.9) We will say that a Q-skeleton is geometric if it satisfies (3.2.6) for a finite extension Qλ of Qℓ inside Q, and
we will denote Sgeom

Q,r (X) ⊂ S1−geom
Q,r (X) as the corresponding subset. The canonical restriction map Sq : CQ,r(X)→

SQ,r(X) therefore factors through Sq : CQ,r(X)→ Sgeom
Q,r (X).

Theorem (3.2.10) For any algebraic C ∈ S1−geom
Qℓ,r

(X) , the trace field QC is a finite extension of Q.

Proof. See [Del12, Remark 3.10]. This alternatively from Theorem (4.1.1).

4 V. Drinfeld’s Main Theorem

4.1 Structure of the Proof

Theorem (4.1.1) ([Dri18, Theorem 2.5])
Let Q be a finite extension of Qℓ. The canonical restriction map Sq : CQ,r(X)→ S1−geom

Q,r (X) is bijective.

Drinfeld’s proof goes in three steps,
(1) every geometric Q-skeleton arises from a Q-coefficient (Lemma (4.1.2)),
(2) every 1-geometric Q-skeleton is geometric over a dense open subset U ⊂ X (Lemma (4.1.3)),
(3) if a 1-geometric Q-skeleton coincides with a Q-coefficient over a dense open subset, then it is actually a

Q-coefficient (Lemma (4.1.4)).
The proofs of these lemmas rely on the Galois description of the category of Q-coefficients.
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Lemma (4.1.2) (after M. Kerz) The canonical restriction map CQ,r(X)→ Sgeom
Q,r (X) is bijective.

Lemma (4.1.3) (after G. Wiesend, M. Kerz-A. Schmidt, cf. in particular [KS09a, §3, §4]) For any C ∈ S1−geom
Q,r (X),

there exists a non-empty open subset U ⊂ X such that C|U ∈ S
geom
Q,r (U).

Lemma (4.1.4) For any non-empty open subset U ⊂ X, the following diagram (where the arrows are the canonical
restriction maps) is Cartesian

CQ,r(X) S1−geom
Q,r (X)

Sgeom
Q,r (U) S1−geom

Q,r (U)

4.2 Proof of Lemma (4.1.2)

Let C be a geometric Q-skeleton of rank r over X. We need to construct a continuous morphism ρ : π1(X) →
GL(r,Q) such that det (1− ρ (Fx)T) = χx(C,T) for all x ∈ |X0|.

Let Π be as in (3.2.6)(2). Since π1(X)/Π is topologically of finite type, so the topological space

H := Hom (π1(X)/Π,GLr(Z)) = lim←−
n

Hom
(
π1(X)/Π,GLr

(
Z/λn)),

equipped with the induced topology gien by the product of discrete topologies, it is compact.
For x ∈ |X0|, let Hx ⊂ H be the subset of representations ρ : π1(X)/Π→ GL(r,Z) such that det (1− ρ (Fx)T) =

χx(C,T). We want to show that
⋂

x∈|X| Hx 6= ∅. By compactness and since Hx is closed, it suffices to show that
for any finite subset F ⊂ |X|,

⋂
x∈F Hx 6= ∅. According to Theorem [Cad18, Theorem 6.1, Bertini Argument], there

exists φ : C → X ∈ Cu(X) and a section F → C such that the induced morphism π1(C) → π1(X) → π1(X)/Π is
surjective. Let c ∈ |C| and ρC : π1(C)→ GL (CCc) be the representation associated with CC. We want to show the
representation ρC : π1(C)→ GL (CCc) factors through ρX : π1(X)/Π→ GL (CCc).

KΠ := ker (π1(C)→ π1(X)→ π1(X)/Π) .

Then it suffices to show ρ(KΠ) is trivial. Since KΠ is normal in π1(C) and the action of π1(C) on CCc is semi-simple,
the action of KΠ on CCc is also semisimple by Clifford’s theorem.

To show that it is trivial, it suffices to demonstrate that it is unipotent or, equivalently, that det (1− ρC(g)T | CCc) =

(1−T)r for g ∈ KΠ. Using the notation from (3.2.6), if Cn → C is the Galois covering corresponding to the inverse
image of π1 (Xn) in π1(C), we have from (3.2.6)(1) that χc(C,T) ≡ (1 − T)r [λn] for c ∈ |Cn|. Therefore, by
Čebotarev density and continuity of ρC,

det (1− ρC(g)T | CCc) ≡ (1− T)r [λn] for g ∈ π1 (Cn).

Now, according to the definition of Π in (3.2.6)(2), we have KΠ =
⋂

n≥1 π1 (Cn). Therefore, the representation
ρC : π1(C)→ GL (CCc) factors through ρX : π1(X)/Π→ GL (CCc). By construction, we get a ρX ∈ Hx.

4.3 Proof of Lemma (4.1.3)

1. We can assume that for all C ∈ Cu(X), CC is tame.
By replacing X with a dense open subset and defintion of 1-geometric, we can assume that C is tame by a

connected étale covering as in (3.2.2). Clearly, if X′ → X is an étale covering and C is a Q-skeleton over X, then C
is 1-geometric (resp. geometric) if and only if C|X′ is 1-geometric (resp. geometric). Thus to prove (4.1.3), we can
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assume that for all C ∈ Cu(X), CC is tame.

2. Elementary fibration.
By replacing X with a non-empty open subset and k with a finite extension, we can assume [SGA4, XI, Prop.

3.3] that X is an elementary fibration, i.e., it factors as follows:

X X

S
f

f

with f : X → S projective, smooth, geometrically irreducible of relative dimension 1, X ↪→ X an open immersion
with dense image in each fiber, X\X → S finite and étale, and S smooth and geometrically irreducible over k. Let
η be the generic point of S. By making a base change via an étale open subset S′ → S, we can further assume that
f : X→ S admits a section g : S→ X.

We want to construct a sequence of étale coverings Xn → X,n ≥ 1 satisfying (3.2.6). We will proceed by
induction on the dimension of X.

The case where X is a curve is tautological. We therefore assume that X is of dimension d ≥ 2.

3. Definition of Nn,η̄ ⊂ π1 (Xη̄).
For each s ∈ S, choose a geometric point s̄ above g(s). Since the tame fundamental group πt

1 (Xs̄) is topologically
finitely generated [SGA1, XIII.2.12], it has only finitely many (open) subgroups of bounded index. In particular,
the intersection Nt

n,s̄ ⊂ πt
1 (Xs̄) of all open subgroups of index ≤

∣∣GLr
(
Z/λn)∣∣ is still an open subgroup. Let

Nn,η̄ ⊂ π1 (Xη̄) be the inverse image of Nt
n,η̄ ⊂ πt

1 (Xη̄) under the canonical projection π1 (Xη̄)→ πt
1 (Xη̄).

4. Nn,η̄ ⊂ π1 (Xη̄) is normal.
Since ker (π1 (Xη̄)→ πt

1 (Xη̄)) is normalized by the action of π1(η) on π1 (Xη) ⊃ π1 (Xη̄) via the section π1(η)→
π1 (Xη) induced by g : S→ X, and since Nt

n,η̄ ⊂ πt
1 (Xη̄) is characteristic, Nn,η̄ ⊂ π1 (Xη) is a normal subgroup. Let

Nn,η := Nn,η̄ ⋊g π1(η) ⊂ π1 (Xη) = π1 (Xη̄)⋊g π1(η); it is an open, normal subgroup of π1 (Xη).

Since S is normal, π1 commutes with limit, so π1 (Xη) = limV⊂S π1 (X×S V), where the limit is taken over all
non-empty Zariski opens V ⊂ S. By replacing S with a non-empty open, we can assume that Nn,η contains the
kernel of p : π1 (Xη)→ π1(X), and thus, by setting Nn := p (Nn,η), we have Nn,η = p−1 (Nn).

Let X̃n → X be the Galois (connected étale) covering corresponding to Nn ⊂ π1(X). For a closed point s ∈ |S|,
let S(s̄) := Spec (OS,s̄) be the strict henselization and X(s̄) := X×S S(s̄). We have πt

1

(
X(s̄)

)
' πt

1 (Xs̄) by [SGA1, VIII
2.10]. The theory of specialization of the tame fundamental group [SGA1, XIII] provides a commutative diagram
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πt
1 (Xη̄) πt

1

(
X(s̄)

)
πt
1 (Xs̄)

π1
(
X(s̄)

)
π1 (Xη̄) π1(X) π1 (Xs̄)

πt
1 (Xη̄) /Nt

n,η̄ π1 (Xη̄) /Nn,η̄ π1(X)/Nn πt
1 (Xs̄) /Nt

n,s̄

ϕη

sps̄

≃

ϕs

≃ ≃

By definition of Nt
n,η̄,Nt

n,s̄, sps̄
(
Nt

n,η̄
)
⊂ Nt

n,s̄, the commutativity of the diagram shows that π1
(

X̃n,s̄

)
⊂ ker (φs).

In particular, CXs |X̃n,̄s
is trivial modulo λ

n, i.e., the representation of π1
(

X̃n,s

)
on CXs,s̄ mod λn factors through

π1

(
X̃n,s

)
→ π1(s). But by the induction hypothesis, there exists a Galois covering Sn → S for g∗C as in (3.2.6) (1).

Any connected component Xn of X̃n ×S Sn then provides a Galois covering for C as in (3.2.6) (1).
As it stands, the argument does not work because the open set by which we must replace S to ensure that Nn,η

contains the kernel of p : π1 (Xη)→ π1(X) depends on n. Therefore, it needs some modification:
1. We apply it as it is for n = 1.
2. This allows us to reduce to the case where the CC mod λ,C ∈ Cu(X) are trivial, and thus, in the above

argument, the tame fundamental group can be replaced in the argument above by its pro `-completion πt
1 (Xs̄) →

π
(ℓ)
1 (Xs̄) for which the specialization maps π(ℓ)

1 (Xη̄)→ π
(ℓ)
1 (Xs̄) are isomorphisms, and we now use [SGA1, XIII]

1 π
(ℓ)
1 (Xη̄) π

[ℓ]
1 (Xη) π1(η) 1

1 π
(ℓ)
1 (Xη̄) π

[ℓ]
1 (X) π1(S) 1

= p

where π[ℓ]
1 (−) is the notation for the quotient by the characteristic subgroup ker

(
π1 (Xη̄)→ π

(ℓ)
1 (Xη̄)

)
.

3. In this setup, the group N(ℓ)
n,η = N(ℓ)

n,η̄ ⋊ π1(η) ⊂ π
[ℓ]
1 (Xη) = π

(ℓ)
1 (Xη̄) ⋊ π1(η) contains the kernel of p :

π
[ℓ]
1 (Xη) → π

[ℓ]
1 (X), and therefore we can define N[ℓ]

n := p
(

N(ℓ)
n,η

)
⊂ π

[ℓ]
1 (X) and take the inverse image of N[ℓ]

n via

π1(X)→ π
[ℓ]
1 (X) without shrinking S. Furthermore, the open subgroups π1 (Xn) = π1

(
X̃n

)
∩ p−1 (π1 (Sn)) satisfy

π1(X)/π1 (Xn) ↪→ π1(X)/π1

(
X̃n

)
× π1(S)/π1 (Sn) ' π(ℓ)

1 (Xη̄) /N(ℓ)
n,η̄ × π1(S)/π1 (Sn) .

Therefore π(ℓ)
1 (Xη̄), and hence π(ℓ)

1 (Xη̄) /∩n≥1 N(ℓ)
n,η̄, is pro-` topologically of finite type, and π1(S)/∩n≥1 π1 (Sn) is

almost pro-` topologically of finite type by the induction hypothesis. Thus the Xn → X also satisfy (3.2.6) (2).

4.4 Proof of Lemma (4.1.4)

Let C ∈ Sgeom
Q,r (U) and S ∈ S1−geom

Q,r (X) such that S|U ' C. According to Lemma (4.1.2), we know that
C ∈ CQ,r(U). We need to show that C extends to a lisse Q-sheaf on X, still denoted by C, and for every x ∈ X\U,
χx(C,T) = χx(S,T). Actually the latter condition is automatic once C extends.

Indeed, let x ∈ X\U. According to [Dri18, Theorem 2.15], there exists a smooth, geometrically connected curve
C over k equipped with a morphism φ : C→ X and a k(x)-point c above x, such that φ−1(U) 6= ∅. In particular, C|C
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and S|C are two lisse Q-sheaves whose semi-simplifications coincide on the non-empty open subset φ−1(U) ⊂ C. By
the Čebotarev theorem and since C is smooth (hence normal and we have π1(U) ↠ π1(X)), their semi-simplifications
coincide on the entire curve C and, in particular, at c.

It remains to show that C extends to a lisse Q-sheaf on X. Suppose it is not. By assumption, for any φ :

C → X ∈ Cu(X), we know that the semi-simplification of C|ϕ−1(U) extends to C. Since X is smooth over k, the
Zariski-Nagata purity theorem [SGA2, X, Theorem 3.4] implies that C must be ramified along an irreducible divisor
D ⊂ X\U. By replacing X with an open subset, we can assume that D = X\U.

Lemma (4.4.1) (based on G. Wiesend, M. Kerz-A. Schmidt, c.f. in particular [KS09b, Lemma 2.4], [KS09a,
Proposition 2.3]). There exists x ∈ D and a line lx ⊂ TxX (depending on C) satisfying the following property: for
every (C, φ) ∈ Cu(X) such that φ−1(U) 6= ∅ and a point c ∈ C above x such that im(Tcφ) = lx, the sheaf C|ϕ−1(U)

is ramified at c.

Proof. Assume that C arises from a scalar extension of a lisse Z-sheaf H, where Z is the ring of integers of a finite
extension Qλ of Qℓ inside Q, and pick n ≥ 1 such that H/λn is ramified along D.

If f : U′ → U is the étale covering trivializing H/λn, and f : X′ → X is the normalization of X in f : U′ → U,
it suffices to construct x ∈ D and lx ⊂ TxX such that for every (C, φ) ∈ Cu(X) as in this lemma, the covering
f : C′ := X′ ×X C→ C is also ramified at c.

Let G be the Galois group of f : U′ → U, and I ⊂ G be the inertia group along D. By replacing X with X′/I, we
can assume that G = I. In particular, G is solvable since I is. Therefore, by replacing X′ → X with X′/J→ X for a
subgroup J ⊂ G, we can assume that G has prime order p. By replacing X with an open subset (whose complement
has codimension greater than 2), we can assume that X′ is smooth over k. Let D′ be the support of the inverse
image of D in X′. The hypothesis G = I implies that the action of G on D′ is trivial, so the covering f : D′ → D is
purely inseparable of degree f | |G| = p.

It suffices to construct φ : C→ X such that C′ is smooth at f−1(c) (the covering C′ → C will then have only one
point above c and thus be ramified). To achieve this, it suffices for lx to be transverse to Hx := m(Tf−1(x)f).

1. If f = 1, it is an isomorphism. We can then take any x ∈ D and lx 6⊂ TxD.
2. If f = p, by replacing X with an open subset (whose complement has codimension greater than 3), we can

assume that D and D′ are smooth and Hx ⊂ TxD has codimension 1 for all x ∈ D. Then it suffices to take x ∈ D
and lx ⊂ TxD, lx 6⊂ Hx.

Let’s go back to the proof of Lemma (4.1.4). The Bertini-Poonen theorem [Poo04] ensures the existence of (C, φ)
with this property. Using Lemma (4.4.1), since C is lisse and semi-simple, it is a direct sum of Qℓ-pure sheaves
(this follows from the combination of Theorem (A.1.8) and companion conjecture for curve). The same holds for
C|ϕ−1(U), which ensures that C|ϕ−1(U)k̄

is semisimple(Proposition (A.1.12)), so it is unramified. Since being ramified
is stable under base change, this shows that C|ϕ−1(U) extends to C unramified at c, this gives a contradiction.

5 Moduli Space and Finiteness ([EK12, 6])
Let X be smooth separated scheme over Fq of finite type over the finite field. Assume that there is a connected

normal projective compactification X ⊂ X such that X\X is the support of an effective Cartier divisor on X.

(5.0.1) In (A.1.13), we define Pr := Gm ×Ar−1. Let Lr(X) be the product
∏

|X| Pr with one copy of Pr for every
closed point of X. It is an affine scheme over Q, which if dim(X) ≥ 1 is not of finite type over Q. We have an
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injective map defined in (3.1.3)
κ : SQℓ,r(X)→ Lr(X)

(
Qℓ

)
,

(CC)C∈Cu(X) 7→
∏
|X|

χx(CCx ,T).
(5.1)

The existence of the moduli space of `-adic sheaves on X is shown in the following theorem of Deligne.

Theorem (5.0.2) For any effective Cartier divisor D ∈ Div+(X) with support in X\X there is a unique reduced
closed subscheme Lr(X,D) of Lr(X) which is of finite type over Q and such that

Lr(X,D)
(
Qℓ

)
= κ

(
SQℓ,r(X,D)

)
.

To construct the (coarse) moduli space, we need Deligne’s finiteness theorem [EK12, Theorem 2.1]:

Theorem (5.0.3) Let X be connected and D ∈ Div+(X) be an effective Cartier divisor with support in X\X. The
set of irreducible sheaves V ∈ CQℓ,r(X,D) is finite up to twist by elements of CQℓ,1

(Fq).

We give a sketch of the construction of the moduli space.

5.1 Moduli over Curves

In this section we assume that X is a curve.
Step 1. For any V1 ⊕ · · · ⊕Vn ∈ CQℓ,r(X,D) and the map(

CQℓ,1
(Fq)

)n
→ Lr(X)

(
Qℓ

)
,

(χ1, . . . , χn) 7→ κ (χ1 ·V1 ⊕ · · · ⊕ χn ·Vn) .
(5.2)

It can be shown that this map is induced by a finite morphism between of affine schemes [EK12, Lemma 6.2].
Then by [EK12, Proposition A.3], we obtain the existence of a unique reduced closed subscheme Li of Lr(X)⊗Qℓ
of finite type over Qℓ such that Li

(
Qℓ

)
is the image of the map (5.2).

Step 2.
By Theorem (5.0.3), there are only finitely many direct sums

V1 ⊕ · · · ⊕Vn ∈ CQℓ,r(X,D) (5.3)

with Vi irreducible up to twists χi 7→ χi ·Vi. Let

Lr(X,D)Qℓ
↪→ Lr(X)⊗Q Qℓ

be the reduced scheme, which is the union of the finitely many closed subschemes Li ↪→ Lr(X)⊗QQℓ corresponding to
representatives of the finitely many twisting classes of direct sums (5.3). Clearly Lr(X,D)Qℓ

(
Qℓ

)
= κ

(
CQℓ,r(X,D)

)
and Lr(X,D)Qℓ

is of finite type over Qℓ.

Step 3.
The automorphism group Aut

(
Qℓ/Q

)
acting on Lr(X) stabilizes κ

(
CQℓ,r(X,D)

)
by [EK12, Corollary 4.9] (A

corollary of companion theorem from [Laf02]). Using the descent Proposition [EK12, A.2] the scheme Lr(X,D)Qℓ
↪→

Lr(X)⊗Q Qℓ over Qℓ descends to a closed subscheme Lr(X,D) ↪→ Lr(X).
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5.2 Higher Dimension

In general case, it is easy to construct a closed subscheme Lr(X,D) ↪→ Lr(X) that

Lr(X,D)
(
Qℓ

)
= κ

(
SQℓ,r(X,D)

)
relying on construction for curves. However from this construction it is not clear that Lr(X,D) is of finite type over
Q. Actually, we define the reduced closed subscheme Lr(X,D) ↪→ Lr(X) by the Cartesian square (in the category
of reduced schemes)

Lr(X,D) Lr(X)

∏
C∈Cu(X) Lr

(
C, φ̄∗(D)

) ∏
C∈Cu(X) Lr(C)

From the definition of Sr(X,D) and construction for curve we get

Lr(X,D)
(
Qℓ

)
= κ

(
SQℓ,r(X,D)

)
.

In addition, as Lr(X)→
∏

C∈Cu(X) Lr(C) is a closed immersion, so is Lr(X,D)→
∏

C∈Cu(X) Lr
(
C, φ̄∗(D)

)
by base

change. To show that it is of finite type, see [EK12, 6.3].

6 Application of Companion Theorem: Tannakian Čebotarev Density
Theorem (A. Cadoret)

Let X0 be a smooth variety, separated and of finite type over Fq. Let C0 be a semisimple Q-coefficient on X0,
where we fix an isomorphism ι : Qℓ

∼→ C.

(6.0.1) Given a geometric point x over x0, recall that we define G (C0) ⊂ GL (Cx) as the Zariski closure of the
images of π1 (X0) acting on Cx. It’s easy to see that the image is independent of the choice of x. We define ΦC0

x0

as the G (C0)-conjugacy class of the image of the geometric Frobenius Fx0
by the map π1 (X0) → G (C0). For a

subset S ⊂ |X0| of closed points, write ΦC0

S := ∪x0∈SΦ
C0
x0

and for every G (C0)-invariant subset ∆ ⊂ G (C0), write
SC0

∆ :=
{

x0 ∈ S | ΦC0
x0
⊂ ∆

}
. In the following, we will also omit the superscript (−)C0 from the notation.

For S ⊆ T two sets of positive integers, with T infinite, the upper natural density of S in T are defined as

lim sup
N→∞

#{n ∈ S : n ≤ N}
#{n ∈ T : n ≤ N} . (6.1)

Theorem (6.0.2) Assume S has upper Dirichlet density δu(S) > 0. Then the Zariski-closure of ΦS contains at
least one connected component of G (C0).

Firstly we prove this theorem for étale Qℓ-coefficient, then use companion theorem to reduce general case to the
étale case.

6.1 Étale Qℓ-Coefficient

For étale Qℓ-coefficient, Theorem (6.0.2) simply follows just from classical Čebotarev density theorem.
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Write G0 := G (C0), which we identify with the Zariski-closure of the image Π0 of the continuous representation
V of π1 (X0) corresponding to C0. For every closed point x0 ∈ |X0|, let Φ̃x0

⊂ Π0 denote the Π0-conjugacy class of
the image ϕx0

of a geometric Frobenius attached to x0 so that the G0-conjugacy class Φx0
defined in (6.0.1) is the

Zariski-closure of Φ̃x0 .
For every closed subset C ⊂ G0 which is a union of conjugacy classes, the subset SC is defined as

SC =
{

x0 ∈ |X0| | Φ̃x0
⊂ Π0 ∩ C

}
. (6.2)

Without loss of generality one may assume C0 is defined over a finite extension Qℓ of Qℓ. Let Zℓ denote the
ring of integers of Qℓ. Fix a Π0-stable Zℓ-lattice Λ ⊂ V, set G0 (Zℓ) := G0 (Qℓ) ∩ GL(Λ) and let µ : B (G0 (Zℓ)) →
[0, |π0 (G0)|] denote the Haar measure on G0 (Zℓ) normalized so that µ (G◦

0 (Zℓ)) = 1, where B (G0 (Zℓ)) denotes
the Borel algebra on G0 (Zℓ). Assume C := ΦSzar does not contain any connected component of G0. Since G0 (Zℓ)
is Zariski-dense in G0, µ (C (Zℓ)) = 0 [Ser16, Proposition 5.12]. On the other hand, since C (Zℓ) ⊂ G0 (Zℓ) is
analytically closed, we have 0 < δu(S) ≤ δu

(
|X0|C(Zℓ)

)
≤ µ (C (Zℓ)) = 0, where the last inequality is [Ser16,

Theorem 6.8] (using the description (6.2) of |X0|C(Zℓ)

)
, whence a contradiction.

6.2 Semisimple Qℓ-Coefficient

We aim to use the companion theorem to reduce the general Qℓ-coefficient to the case of étale Qℓ-coefficient.
By [Cad18, §5], A. Cadoret reformulates Theorem (6.0.2) in terms of the characteristic polynomial map attached
to C0, so for the general semisimple Qℓ-coefficient, it suffices to prove:

Proposition (6.2.1) Assume that C0 is a semisimple Qℓ-coefficient. Then for every prime p 6= ` large enough,
there exists an isomorphism ι′ : Qℓ′ → C and a (necessarily unique) semisimple étale Qℓ′ -coefficient C′0 which is the
companion (with respect to ι, ι′) of C0.

Proof. From [Del80, 1.3.8], one can write C0 = ⊕i∈II(αi)
i,0 with Ii,0 irreducible with finite determinant and αi ∈

Q×
ℓ , i ∈ I, and I(αi)

i,0 is the twist, see (A.1.5). By (1.6.1) (3), for every `′ 6= p and isomorphism ι′ : Qℓ′ → C and
for every i ∈ I, there exists an étale Qℓ-coefficient Ii,0,ℓ′ compatible with Ii,0. What’s more, Ii,0,ℓ′ is irreducible
hence, by construction, C′0 := ⊕i∈II

(ι′−1ι(αi))
i,0,ℓ′ is a semisimple Qℓ′ -coefficient on X0 compatible with C0. From lemma

(6.2.2) below, for p 6= ` large enough, one can furthermore choose ι′ : Qℓ′ ' C in such a way that the ι′−1ι (αi) are
`-adic units that is C′0 is an étale Qℓ′ -coefficient.

Lemma (6.2.2) Let 0 6= α1, . . . , αm ∈ C. Then for every prime `′ large enough, there exists a field isomorphism
ι′ : Qℓ′ ' C such that ι′−1 (α1) , . . . , ι

′−1 (αm) are `′-adic units.

Proof. By the Noether Normalization lemma there exists elements t1, . . . , tr ∈ Q
[
α±1
1 , . . . , α±1

m
]
, algebraically inde-

pendent over Q and such that the extension Q [t1, . . . , tr] ⊂ Q
[
α±1
1 , . . . , α±1

m
]

is finite. For some integer N ≥ 1, the
extension Q [t1, . . . , tr] ↪→ Q

[
α±1
1 , . . . , α±1

m
]

extends to a finite extension Z[1/N] [t1, . . . , tr] ↪→ Z[1/N]
[
α±1
1 , . . . , α±1

m
]
.

Fix a prime `′ ∤ N. Since Z′
ℓ is uncountable, one can find t1,ℓ′ , . . . , tr,ℓ′ ∈ Zℓ′ algebraically independent over Q,

whence an embedding Z[1/N] [t1, . . . , tr] ↪→ Zℓ′ . Localizing at the zero-ideal, one obtains a commutative diagram

Zℓ′ Z[1/N] [t1, . . . , tr] Z[1/N]
[
α±1
1 , . . . , α±1

m
]

Qℓ′ Q (t1, . . . , tr) Q (α1, . . . , αm)

finite

finite
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hence, taking a connected component Eℓ′ of Q (α1, . . . , αm)⊗Q(t1,...,tr) Qℓ′ , a commutative diagram of fields

Q (t1, . . . , tr) Q (α1, . . . , αm)

Qℓ′ Eℓ′

finite

finite

Let Oℓ′ denote the ring of integers of Eℓ′ . Since Z[1/N] [t1, . . . , tr] ⊂ Z[1/N]
[
α±1
1 , . . . , α±1

m
]

is finite hence proper,
the valuative criterion of properness yields a commutative diagram

Z[1/N] [t1, . . . , tr] Z[1/N]
[
α±1
1 , . . . , α±1

m
])

Oℓ′ Eℓ′

finite

∃!

where the diagonal dotted arrow is automatically injective. Eventually, using that C and Qℓ′ have the same
transcendence degree, the above diagram extends as

Z[1/N] [t1, . . . , tr] Z[1/N]
[
α±1
1 , . . . , α±1

m
])

Qℓ C

Oℓ′ Eℓ′ Qℓ′

finite

∃!

≃

≃

where the right up right dotted arrow is an isomorphism.

(6.2.3) Moreover, A. Cadoret proves Theorem (6.0.2) for any Qℓ-coefficient without any assumption of semisim-
plicity [Cad18, §7] using weight theory. Moreover, Theorem (6.0.2) can be deduced easily is a straightforward
consequence of the conjectural formalism of pure motives .

7 Application of the Companion Theorem: Weakly Motivic Q`-Sheaves

7.1 Definition of Weakly Motivic Qℓ-Sheaves

Let X be a scheme of finite type over Fp. The set of its closed points will be denoted by |X|. Let ` be a prime
different from p and let Qℓ be an algebraic closure of Qℓ. Let Sh

(
X,Qℓ

)
be the abelian category of Qℓ-sheaves on

X and D (X,Qℓ) = Db
c
(
X,Qℓ

)
the bounded `-adic derived category [Del80, §1.2-1.3].

(7.1.1) Let us consider a map

Γ : |X| →
{

subsets of Q×}.

Once we choose a prime ` 6= p, an algebraic closure Qℓ ⊃ Qℓ, and an embedding i : Q ↪→ Qℓ, we define a full
subcategory ShΓ

(
X,Qℓ, i

)
⊂ Sh

(
X,Qℓ

)
: a Qℓ-sheaf F is in ShΓ

(
X,Qℓ

)
if for every closed point x ∈ X, all

eigenvalues of the geometric Frobenius Fx : Fx → Fx are in i (Γx).
Let DΓ

(
X,Qℓ, i

)
⊂ D

(
X,Qℓ

)
be the full subcategory of complexes whose cohomology sheaves are in ShΓ

(
X,Qℓ, i

)
.

Let KΓ

(
X,Qℓ, i

)
denote the Grothendieck group of DΓ

(
X,Qℓ, i

)
.
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(7.1.2) For any field E, set
A(E) :=

{
f ∈ E(t)× | f(0) = 1

}
.

A sheaf F ∈ ShΓ

(
X,Qℓ, i

)
defines a map

fF : |X| → A(i(Q)) = A(Q), x 7→ det (1− Fxt,F)

Since for any subsheaf F ′ ⊂ F we have fF = fF ′ fF/F ′ , we get a homomorphism KΓ

(
X,Qℓ, i

)
→ A(Q)|X0|, where

A(Q)|X0| is the group of all maps |X0| → A(Q). This map is injective [Dri18, Lemma 1.5] by reducing to the normal
case then using Čebotarev density theorem.

(7.1.3) By Drinfeld’s Theorem (1.5.1) and conjecture (1.3.3) (a) (proved in [Del12]), if for each x ∈ |X| all
elements of Γx are units outside of p, the subgroup KΓ

(
X,Qℓ, i

)
⊂ A(Q)|X| does not depend on the choice of `,Qℓ,

and i : Q ↪→ Qℓ. Thus we can write simply KΓ(X,Q) instead of KΓ

(
X,Qℓ, i

)
.

Definition (7.1.4) For x ∈ |X|, let Γmix
x ⊂ Q×be the set of numbers α ∈ Q×with the following property: there

exists n ∈ Z such that all complex absolute values of α equal qn/2
x , where qx is the order of the residue field of x.

Let Γmot
x be the set of those numbers from Γmix

x that are units outside of p.

Since Γmix
x is stable under Gal(Q/Q) the categories ShΓmot

(
X,Qℓ, i

)
and DΓmot

(
X,Qℓ, i

)
do not depend on

the choice of i : Q ↪→ Qℓ. We denote them by Shmot
(
X,Qℓ

)
and Dmot

(
X,Qℓ

)
. Similar we define categories

Shmix
(
X,Qℓ

)
and Dmix

(
X,Qℓ

)
. The following theorem [Laf02, VII.8] tells us that Shmix

(
X,Qℓ

)
coincides with the

mixed `-adic sheaf defined in [Del80, definition 1.2.2]. More precisely, by dévissage we reduce to the case where F
is simple lisse sheaf, after some twist, we then can apply [Laf02, VII.7 (i)].

Definition (7.1.5) Objects of Shmot
(
X,Qℓ

)
(resp. Dmot

(
X,Qℓ

)
) are called weakly motivic Qℓ-sheaves (resp.

weakly motivic Qℓ-complexes).

As (7.1.3) is applicable to Γmot
x , we have a well defined group

Kmot(X,Q) := KΓmot(X,Q).

7.2 Grothendieck’s Yoga in Dmot
(
X,Qℓ

)
Lemma (7.2.1) Let f : X→ Y be a morphism between schemes of finite type over Fp. Suppose that a Qℓ-sheaf M
on X has the following property: the eigenvalues of the geometric Frobenius acting on each stalk of M are algebraic
numbers which are units outside of p. Then this property holds for the sheaves Rif!M and Rif∗M.

Proof. The statement about Rif!M follows from [SGA7-II, XXI. Theorem 5.2.2]. In [SGA7-II, VII. 5.0] Deligne
defined “T-integer” for some set of primes T, in our case take T = {p} and use the fact that Γmot

x = Γmix
x ∩ R(q)×,

where R(q) is the integral closure of Z[1/q] in Q, so that by checking fibers we can apply [SGA7-II, XXI. Theorem
5.2.2]. (ii) follows from the proof of [SGA7-II, Theorem 5.6] and de Jong’s result on alterations [Jon96, Theorem
4.1].

Theorem (7.2.2) Let f : X→ Y be a morphism between schemes of finite type over Fp. Then
(i) the functor f! : D

(
X,Qℓ

)
→ D

(
Y,Qℓ

)
maps Dmot

(
X,Qℓ

)
to Dmot

(
Y,Qℓ

)
;

(ii) the functor f∗ : D
(
X,Qℓ

)
→ D

(
Y,Qℓ

)
maps Dmot

(
X,Qℓ

)
to Dmot

(
Y,Qℓ

)
;
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(iii) the functors f∗ and f! map Dmot
(
Y,Qℓ

)
to Dmot

(
X,Qℓ

)
.

Proof. (i) From [Del80, Theorem 3.3.1] we know that f! maps Dmix
(
X,Qℓ

)
to Dmix

(
Y,Qℓ

)
, and (i) follows from

(7.2.1) and definition.
(ii) Similar to (i), using [Del80, Theorem 6.1.2]: f∗ maps Dmix

(
X,Qℓ

)
to Dmix

(
Y,Qℓ

)
.

(iii) For f∗ the statement is obvious. For f! it follows from (ii), we follow the proof in [Del77, Théorèmes de
finitude en cohomologie `-adique, Corollary 1.5]. Precisely, the problem is local, which allows us to assume that f
factors as X i−→ Z g−→ Y (with i a closed embedding and g smooth, purely of relative dimension n). The Poincaré
duality g!K = K(n)[2n] and the transitivity f! = i!g! reduce the proof to the case of i. For any L ∈ D (Z,Qℓ), if j
is the inclusion of U = Z\X into Z, then i∗i!L is the mapping cylinder of K → j∗j∗K, and (iii) for i follows from
(ii).

Theorem (7.2.3) For any scheme X of finite type over Fp, the full subcategory Dmot
(
X,Qℓ

)
⊂ D

(
X,Qℓ

)
is stable

with respect to the functor ⊗, the Verdier duality functor D, and the internal Hom functor.

Proof. The statement for ⊗ is obvious. The other two statements follow from Theorem (7.2.2).

Definition (7.2.4) Two invertible Qℓ-sheaves A and A′ on SpecFp are equivalent if A′A−1 is weakly motivic. Let
S denote the set of equivalence classes.

The following theorem is an analogue of [Del80, Theorem 3.4.1(i)].

Theorem (7.2.5) Let D
(
X,Qℓ

)
be the essential image of Dmot

(
X,Qℓ

)
under the functor of tensor multiplication

by π∗A (clearly DA
(
X,Qℓ

)
depends only on the class of A in S ). Then

D
(
X,Qℓ

)
=

⊕
A∈S

DA
(
X,Qℓ

)
. (7.1)

Proof. The proof proceeds in two steps:
(i) The triangulated category D (X,Qℓ) is generated by the subcategories DA

(
X,Qℓ

)
.

(ii) The subcategories DA
(
X,Qℓ

)
are orthogonal to each other.

(i) By dévissage we know that the triangulated category D
(
X,Qℓ

)
is generated by objects of the from i!C, where

i : Y ↪→ X is a locally closed embedding with Y normal (we take a normal open subscheme generically and for the
complement we use dimension induction) connected and C is an irreducible lisse Qℓ-sheaf on Y. So it remains to
show that for any such Y and C there exists an invertible Qℓ-sheaf A on Spec Fp such that C ⊗ π∗A−1 is weakly
motivic. By [Del80, §1.3.6], there exists A such that the determinant of C⊗π∗A−1 has finite order. Since C⊗π∗A−1

is an irreducible lisse Qℓ-sheaf whose determinant has finite order, it is weakly motivic (and pure) by a result of
Lafforgue [Laf02, Proposition VII.7(ii)].
(ii) By the definition of orthogonality, we have to prove that if M1,M2 ∈ Dmot

(
X,Qℓ

)
,A is an invertible Qℓ-sheaf

on Spec Fp and Exti (M1 ⊗ π∗A,M2) 6= 0 for some i, then M1 ⊗ π∗A,M2 are in the same class, i.e. A is weakly
motivic. By the adjoint property, we have

Exti (M1 ⊗ π∗A,M2) = Exti (A, π∗Hom (M1,M2)) , (7.2)

hence π∗Hom (M1,M2) is weakly motivic by Theorems (7.2.3) and (7.2.2)(ii). So if the LHS of (7.2) is nonzero,
then A has to be weakly motivic otherwise RHS would be 0 by the following lemma.
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Lemma (7.2.6) Exti (M1,M2) = 0 if M1 belongs to Dmot
(
X,Qℓ

)
and M2 does not.

Proof. By shifting it suffices to prove Hom (M1,M2) = 0. We have

Hom (M1,M2) ' H0(Spec (Fq) , π∗ Hom (M1,M2)) = 0,

since π∗ Hom (M1,M2) is not in Dmot
(
X,Qℓ

)
by (7.2.1) and (7.2.3), so the eigenvalue of the geometric Frobenius

F on H0(Spec (Fq) , π∗ Hom (M1,M2)) are not in Γmix
x , but it should be Frobenius invariant.

Corollary (7.2.7) One has

Sh
(
X,Qℓ

)
=

⊕
A∈S

ShA
(
X,Qℓ

)
, ShA

(
X,Qℓ

)
:= Sh

(
X,Qℓ

)
∩DA

(
X,Qℓ

)
, (7.3)

Perv
(
X,Qℓ

)
=

⊕
A∈S

PervA
(
X,Qℓ

)
, PervA

(
X,Qℓ

)
:= Perv

(
X,Qℓ

)
∩DA

(
X,Qℓ

)
, (7.4)

where S is as in Definition (7.2.4).

Proof. As Sh
(
X,Qℓ

)
⊂ D

(
X,Qℓ

)
and Perv

(
X,Qℓ

)
⊂ D

(
X,Qℓ

)
are closed under direct sums and direct summands,

then it follows from Theorem (7.2.5).

(7.2.8) The category Pervmot
(
X,Qℓ

)
:= Perv

(
X,Qℓ

)
∩ Dmot

(
X,Qℓ

)
is one of the direct summands in the

decomposition (7.4) (it corresponds to the trivial A). Similarly, Shmot
(
X,Qℓ

)
is one of the summands in (7.3) and

Dmot
(
X,Qℓ

)
is one of the summands in (7.1).

Proposition (7.2.9) (i) The full subcategory Dmot
(
X,Qℓ

)
⊂ D

(
X,Qℓ

)
is stable with respect to the perverse

truncation functors τ≤i and τ≥i.
(ii) A perverse Qℓ-sheaf is weakly motivic if and only if each of its irreducible subquotients is.

Proof. (i) and (ii) are from the direct sum decomposition in (7.1), (7.4). On the other way, (i) follows from
the corresponding statements for mixed sheaves in [BBD82, 5.1.6]. Precisely, “weakly motivic” is tested on the
cohomology sheaf and we just need the natural truncation to construct the perverse truncation functors.

(ii) follows from the corresponding statements for mixed sheaves in [BBD82, 5.1.7]. Precisely, the sufficiency is
clear, and for the necessity, use [BBD82, 5.1.3] (hypothesis of [BBD82, 5.1.3] is satisfied by (7.2.3) and (i)).
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A Weil II and Weights Theory
Let Fq be a finite field of characteristic p > 0 and F = Fq; let ` denote an arbitrary prime different from p; let

X0 denote a normal, geometrically connected scheme of finite type over Fq and X = X0 ⊗Fq F. Let |X0| denote the
set of closed points of X0. For x ∈ |X0|, let κ(x) denote the residue field of x and let q(x) denote the cardinality of
κ(x).

A.1 Q-Coefficient

(A.1.1) Let R be a local Noetherian ring of residual characteristic `, and m its maximal ideal. We assume that
R is complete with respect to the m-adic topology. The category of constructible R-sheaves is the 2-limit of the
categories [SGA4, VI (6.10)] of sheaves of R/I-modules, where I is an open ideal of R.

Let E be a finite extension of Qℓ and R be the integral closure of Zℓ in E. The category of constructible E-
sheaves is the quotient of the category of constructible R-sheaves by the thick subcategory of torsion sheaves [Del80,
1.1.1(c)].

The category of constructible Qℓ-sheaves is the Qℓ-linear 2-colimit of categories of the categories of constructible
E-sheaves, where E ⊂ Qℓ runs over all finite extension of Qℓ [Del80, 1.1.1(d)]. A constructible Qℓ-sheaf is said to
be lisse if it is locally of the form F ⊗E Qℓ, where F is a lisse sheaf.

(A.1.2) A Weil sheaf G0 on an algebraic scheme X0 over Fq is a Qℓ-sheaf G on X together with an isomorphism

F∗ : F∗(G) ∼= G

where F is the Frobenius automorphism F : X→ X.
Following the Deligne’s setting, we will simply refer to Weil sheaves as “sheaves” . The constructible Qℓ-sheaves

will be called étale sheaves.

(A.1.3) We follow the notation in [Cad18]. If Q is an algebraic extension of Qℓ, by a Q-coefficient we mean a lisse
Weil Q-sheaf.

(A.1.4) We say a Qℓ-coefficient C0 of rank 1 on X0 is of finite order iff there exists n ≥ 1 such that C⊗n
0 is trivial.

(A.1.5) Let pr: X0 → Spec(Fq) be the structural morphism, and let L0 be a rank 1 Qℓ-coefficient on Spec(k).
For any Qℓ-coefficient C0 on X, the twist of C0 by L0 is given by C0 ⊗ pr∗ L0. Since L0 is determined by the image
α ∈ Q×

ℓ , we will also denote C0 ⊗ pr∗ L0 as C(α)0 . Note that L0 is a étale sheaf iff α is `-adic unit.

(A.1.6) The category of étale lisse Qℓ-sheaves is constructed by taking limits of categories of constructible locally
constant sheaves with finite coefficients in characteristic `, which are Galois categories. It follows that for every
geometric point x̄ lying over x ∈ X0, the fiber Cx of a lisse étale Qℓ-sheaf C0 is equipped with a continuous action
of the étale fundamental group π1(X0) := π1(X0, x̄) of X0, and the fiber functor C0 7→ Cx induces an equivalence
of categories between lisse étale Qℓ-sheaves and finite-dimensional continuous Qℓ-representations of π1(X0). The
groups G(C),G(C0) ⊂ GL (Cx) respectively identify with the Zariski closure of the images of π1 (X) , π1(X0) acting
on Cx.

The morphisms X→ X0 → Spec(Fq) induce a short exact sequence (assuming X0 is geometrically connected):

1→ π1 (X)→ π1(X0)→ π1(Fq)→ 1
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Furthermore, the geometric Frobenius defines a morphism Z→ π1(Fq) ' Ẑ. The category of Qℓ-coefficients can be
described in a similar way by replacing the étale fundamental group with the Weil group W(X0), which is the fiber
product W(X0) := π1(X0) ×π1(Fq) Z equipped with the topology induced by the product of the profinite topology
on π1 (X) and the discrete topology on Z.

Example (A.1.7) The data of a rank 1 Qℓ-coefficient on Spec(Fq) is equivalent to that of an element of Q×
ℓ ; the

full subcategory of lisse étale Qℓ-sheaves on Spec(Fq) corresponds to the subgroup Z×
ℓ ⊂ Q×

ℓ of `-adic units.

Proposition (A.1.8) ([Del80, 1.3.4]).
Every rank 1 Qℓ-coefficient on X0 is the twist of a finite Qℓ-coefficient. In particular, every Qℓ-coefficient on X0

is the twist of a finite Qℓ-coefficient with finite determinant.

Proof. It follows from the Artin reciprocity law from class field theory.

Proposition (A.1.9) ([Del12, 0.4]).
Let C0 be a Qℓ-coefficient on X0. The following conditions are equivalent:
a) C0 is étale;
b) det(C0) is étale;
c) C0 = S(α)0 , where S0 is a lisse étale Qℓ-sheaf with finite determinant and α is an `-adic unit.

Theorem (A.1.10) (Grothendieck trace formula, [Gro66]).

L(X0, C0,T) =
∏

i≥0 det
(
1− q−dF−1T | Hi(X0, Č0)

)(−1)i+1

=
∏

i≥0 det
(
1− FT | Hi

c(X0, C0)
)(−1)i+1

,

where Č0 is the dual sheaf, and F is the action of geometric Frobenius.

(A.1.11) If C0 is a Qℓ-coefficient on X0, then the groups G(C),G(C0) ⊂ GL (Cx) identify respectively with the
Zariski closure of the image of π1 (X) ,W(X0) acting on Cx.

Proposition (A.1.12) (Global monodromy, [Del80, 1.3.8]).
Let C0 be a Qℓ-coefficient on X0. The radical of G(C) is unipotent.

Proof. We have a semidirect exact sequence

1 −→ G(C) −→ G(C0)
deg−→ Z −→ 1,

and there exists a positive integer N such that the semisplit sequence

1 −→ G(C) −→ deg−1(N · Z) deg−→ N · Z −→ 1.

is split. Replacing the base field by its degree N extension, we can assume N is 1. Thus we have the following
commutative diagram:

1 π1(X, x̄) π1(X0, x̄) Z 1

1 G(C) G(C)× Z Z 1

(G(C))ab

ρ ρ

α

π
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By property of reductive group (G(C))ab is the product of a finite group and a torus. Conisder the composition
α ◦π ◦ ρ, we can show that the image of π1(X0, x̄) in (G(C))ab is finite. But it must be Zariski dense by definition of
G(C), so (G(C))ab is finite and hence G(C) is semi-simple. By passing to the identity component, we get that G(C)
is unipotent.

Let Fq be a finite field, F = Fq and let X0 be a normal scheme of finite type over Fq. Let ` and `′ be prime
numbers not dividing q. For brevity, we take the definition used in [Ked22] and [Cad18]: if Q is an algebraic
extension of Qℓ, by a Q-coefficient C0 we mean a lisse Weil Q-sheaf. Let C be its base change to X = X0 ⊗Fq F.

(A.1.13) Let χx(C,T) := det (1− FxT, C0) ∈ Q[T] be the caracteristic polynomial at a closed point x. The rank
r of Cx is independent of x, and we have a characteristic polynomial mapping:

χ−(C) : |X0| → Pr
(
Qℓ

)
x → χx(C,T)

takes values in the Qℓ-points of the Q-variety Pr := Gm × Ar−1 of degree-r polynomials with constant term
1. The morphism (Gm)

r → Pr that takes (β1, . . . , βr) to the polynomial
∏r

i=1 (1− βit) induces an isomorphism
(Gm)

r
/Sr

∼−→ Pr, where Sr is the symmetric group.

(A.1.14) For a Qℓ-coefficient C0, we say that C0 is algebraic if for all x ∈ |X0| , χx (C,T) has coefficients in the field
of algebraic numbers. Given a Qℓ-coefficient C1 and a Qℓ′ -coefficient C′2 and fixed an isomorphism ι : Qℓ → Qℓ′ ,
we say they are companions if for all closed points in X0, the characteristic polynomials of Frobenius on C1,x and
C2,x coincide.

Proposition (A.1.15) Let C1, C2 be two algebraic Qℓ-coefficients on X0 which are companions, then
(a) If C1 is irreducible, then so is C2.
(b) C1 and C2 have the same semi-simplification.

Proof. In both cases, we may assume that X0 is irreducible of pure dimension d, and by [Del80, 1.8.10] that C1, C2
are both pure of weight 0 and semi-simple.

In case (a), note that by Schur’s lemma, as a W(X0, x)-module, Ci is irreducible if and only if H0 (X, C∨i ⊗ Ci)
F

is one-dimensional. We may thus apply Lemma (A.2.6) to C∨1 ⊗ C1, C∨2 ⊗ C2 to conclude.
In case (b), it suffices to check that any irreducible subobject F of C1 (which must also be pure of weight 0 )

also occurs as a summand of C2. To this end, by Schur’s lemma again, note that F occurs as a summand of Ci if
and only if H0 (X,F∨ ⊗ Ci)

φ 6= 0; we may thus apply Lemma (A.2.6) to C∨1 ⊗F , C∨2 ⊗F to conclude.

(A.1.16) Let K be a global field, K denote a separable closure of K. In [Ser98] Serre defined strictly compatible
system of `-adic representations of Gal(K/K):

Let S be a finite set of non-archimedean primes of K. A compatible system is consisted of a continuous rep-
resentation ρℓ of Gal(K/K) on a finite dimensional Qℓ-vector space Vℓ, for all ` ∤ char(K). One assumes that
ρℓ is unramified at every non-archimedean place v /∈ S whose residue characteristic is not `. For all such `, v, the
characteristic polynomial of the image ρℓ (Frobv) of Frobenius is well-defined, and the compatibility condition states
that its coefficients lie in Q and depend only on v. Clearly, this condition implies that the dimension n of Vℓ is
independent of `. We assume that the system is pure of weight w ∈ Z, i.e. that the eigenvalues of ρℓ (Frobv) have
absolute value qw/2

v for every complex embedding, where qv is the number of elements in the residue field of v.
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Example (A.1.17) Let K is a function field. Let Fq ⊂ K be its field of constants and let X0 be smooth geometrically
connected algebraic curve over Fq with function field K.

We remove from X0 the finite set where the ρℓ may be ramified, and fix a geometric point x̄ of X0. Then each
ρℓ comes from a representation of the étale fundamental group π1(X0, x̄) which we denote again by ρℓ. Every Vℓ is
the stalk at x̄ of a lisse `-adic sheaf F0 on X0, which is pointwise pure of weight w.

The Zariski closure of ρℓ (π1(X, x̄)) is the geometric fundamental group G (F0) (A.1.11) is semisimple(A.2.7).

Proposition (A.1.18) The dimension of the space of invariants VG(F0)
ℓ is independent of `.

Proof. As a curve, the cohomology with compact support Hi
c (X,F) vanishes in degrees i > 2.

For i = 2 Hi
c (X,F) is canonically isomorphic to VG(F0)

ℓ (−1), where (−1) denotes Tate twist; it is therefore pure
of weight w + 2.

In degrees i = 1, by [Del80, 3.3.1] Hi
c (X,F) has weights < w + 2.

It follows that the dimension in question can be described as the sum of the multiplicities of all Frobenius
eigenvalues of weight w+2 in the virtual representation

∑
(−1)iHi

c (X,F). By the Lefschetz trace formula (A.1.10)
this number depends only on the zeta function of (X0,F0), which is, by the compatibility assumption, independent
of `.

A.2 Weights Theory

Fix ι an embedding of Qℓ into C, C0 a Qℓ-coefficient.

Definition (A.2.1) 1. For x ∈ |X0|, the multiset of ι-weights of C0 at x is the multiset consisting of−2 log#κ(x) |ι(λ)|
as λ varies over the roots of χx(C,T) (counted with multiplicity).

2. C0 is ι-pure of weight w if for all x ∈ |X0|, the multiset of ι-weights of C0 at x consists of the single element w.

3. C0 is ι-mixed if it is a successive extension of Qℓ-coefficients that are ι-pure.

Remark (A.2.2) The definition for ι-mixed differs from the definiton given in [Del80, 1.2.2 (ii)]. But they coincides
[Del80, 1.8.11] by the semicontinuity of weight [Del80, 1.8.10]. Notice that we don’t require X0 to be normal by
[Del80, 3.4.11].

Proposition (A.2.3) (semicontinuity of weight) Suppose that for some w ∈ R, there exists an open dense
subset U0 of X0 (not necessary normal) such that C0|U0

is ι-pure of weight w. Then C0 is also ι-pure of weight w.
What’s more, if X0 is irreducible and normal, C0 is irreducible and C0|U0

is ι-mixed, then C0 is ι-pure.

Proof. For the first argument, see [Del80, Corollary 1.8.9], use the local monodromy of pure sheaves and dévissage.
On the other hand, we can deduce it immediately from (A.2.4). For the second argument, notice that if X0 is
normal, we have π1 (U0) ↠ π1 (X0), thus if C0 is irreducible, C0|U0

is irreducible, so C0|U0
is ι-pure, then apply the

first argument.

Proposition (A.2.4) The multiset of ι-weights of C0 at x ∈ |X0| is independent of x.

Proof. See [Del80, Corollary 1.8.12]. On the other hand, we can also use [Laf02, VII.6]. It suffices to compare two
points x, y ∈ |X0|. By restricting to a curve in X0 through x, y, we may assume that X0 is a curve (such a curve
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exists by Hilbert irreducibility, see [EK12, Appendix B]); in this case, we may further assume that C0 is irreducible
and its determinant is of finite order by a twist. We may then apply [Laf02, VII.6] to deduce that C0 is ι-pure of
weight 0.

Theorem (A.2.5) ([Del80, 3.3.4]).
Let f : X0 → Y0 be a finite type morphism of schemes over Z. If C0 is ι-pure of weight w, then for each i, Rif!C0

is mixed of weight ≤ n + i.

Sketch of proof: The main theorem in [Del80]. For a sketch of proof, using dévissage and a generic argument,
we reduce to the case X0 is the complement in X0, a smooth and projective scheme of pure relative dimension 1
over Y0, of an étale finite divisor D0 over Y0, and that C0 is tamely ramified along D0. For the curve case, we
use Rankin-Selberg method, Lefschetz pencil from [SGA7-II] and several results of weights theory built in [Del80]:
τ -real sheaves, semicontinuity of weights, and monodromy. To use Rankin-Selberg method, we make induction,
and the key trick is to apply Lefschetz pencil to the tensor product of an open dense subset U0 and use Künneth
formula, cf. [Del80, 3.2.6].

□

Corollary (A.2.6) Suppose that X0 is irreducible of pure dimension d and that C0 is a ι-pure of weight 0 Qℓ-
coefficient. Then the pole order of L(C,T) at T = q−d equals the multiplicity of 1 as an eigenvalue of Frobenius on
H0 (X, C∨).

Proof. By the Lefschetz trace formula (A.1.10), the factor i = 0 contributes the predicted value to the pole order.
Meanwhile, by (A.2.5), the eigenvalues of F on Hi (X, E∨) for i > 0 all have absolute value at least q1/2, so the
corresponding factor of (A.1.10) only has zeroes or poles in the region |T| ≥ q−d+1/2. This proves the claim.

Corollary (A.2.7) If C0 is a pure Qℓ-coefficient on X0, then C is semi-simple; in particular, G(C) is semi-simple.

Proof. See [Del80, 3.4.1(iii)]. The key is from the Hochschild–Serre spectral sequence we get a exact sequence like

H0 (X, C∨2 ⊗ C1)F → Ext (C2, C1)→ H1 (X, C∨2 ⊗ C1)
F,

and by the Deligne’s purity theory [Del80, Theorem 3.3.1] the Frobenius invariant part can only be null.

Use the proof quite similar to (A.2.7) (compare weights from two parts), Deligne gives another two aplications:
local invariant cycle theorem [Del80, Theorem 3.6.1] and hard Lefschetz theorem [Del80, 4.1].

(A.2.8) If V is an irreducible Qℓ-representation of W (X0, x), its restriction to π1(X, x) is a sum of non-isomorphic
irreducible representations of π1(X, x) by Clifford’s theorem, permuted transitively by W (X0, x) /π1 (X, x) = Z.

Let n be the number of summands, and X1 := X0 ⊗Fq Fqn ; W (X1, x) is the inverse image in W (X0, x) of nZ. If
S is one of the irreducible summands of the restriction of V to π1(X, x), use the proof of Clifford’s theorem it’s easy
to see that S is a representation of W (X1, x) and V is induced from IndW(X0,x)

W(X1,x)(S).
If V (resp. S) is the corresponding Qℓ-Weil sheaf for V (resp. S), V is the direct image, via X1 → X0, of S.

(A.2.9) Now let V be a semisimple representation of W (X0, x). The quotient Z of W (X0, x) permutes the
isomorphism classes of simple constituents of the restriction of V to π1(X, x) by (A.2.8).
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Let A be the set of orbits, and in each orbit a, choose a representative S′
a. Let n(a) be the number of elements in

the orbit. If Xa = X0⊗Fq Fqn(a) , the representation S′
a extends to a representation Sa of W (Xa, x), and Sa is unique

up to torsion by a character of the quotient Z of W (Xa, x). We choose the torsion so that the character det (Sa) of
W (Xa, x) is of finite order.

Applying (A.2.8) to the irreducible constituents of V and grouping the occurrences of Sa, we obtain a decom-
position

V =
⊕

a IndW(X0,x)
W(Xa,x) (Sa ⊗Wa)

for Wa a representation of W (Xa, x) trivial on π1(X, x). This description of V is unique, up to the following:
a) twisting Sa by a finite-order character of Z = W (Xa, x) /π1(X, x), and Wa by the inverse character.
b) replacing Sa with its conjugate S(i)

a by an element i of W (X0, x) /W (Xa, x) = Z/n(a).

(A.2.10) Let’s switch from the language of group representations to that of sheaves: Sa (resp. S(i)
a ) corresponds

to Sa,1 (resp. S(i)a,1) on Xa, Wa corresponds to Wa on Spec(Fqn(a)), and if pa is the projection from Xa to X0, and
pra is the projection from Xa to Spec(Fqn(a)), then (A.2.9) becomes a decomposition of the Weil Qℓ-sheaf V on:

V =
⊕
a∈A

pa∗ (Sa,1 ⊗ pr∗aWa) . (A.1)

In this decomposition, the det(Sa) are of finite order, and the inverse images S(i)a on X of the S(i)a,1 (for a ∈ A and
i ∈ Z/n(a)) are irreducible Qℓ-sheaves that are not isomorphic to each other.

Proposition (A.2.11) ([Del12, 1.3, 1.4])
Let C0 be a Qℓ-coefficient. For n ≥ 1, let kn be the extension of degree n of k = Fq in k̄, and let pn : Xkn → X0

be the canonical projection. Then C0|Xkn
is irreducible if and only if C0|X is irreducible for every n ≥ 1.

Proof. The sufficiency is trivial. Necessity follows from the discussion above.

B Ramification at Infinity

B.1 Recall of SGA7 XIII.2

(B.1.1) Let X be an S-scheme and D be a effective divisor on X. Recall [SGA5, II 4.2] that we say D has strict
normal crossings relative to S if there exists a finite family (fi)i∈I of elements in Γ (X,OX) such that D =

∑
i∈I div (fi)

and the following condition is satisfied: for every point x in Supp D, X is smooth over S at x, and if we denote I(x)
as the set of i ∈ I such that fi(x) = 0, then the subscheme V

(
(fi)i∈I(x)

)
is smooth over S and has codimension

card I(x) in X.
The divisor D is said to have normal crossings relative to S if, locally on X in the étale topology, it has strict

normal crossings.

(B.1.2) Let D be a divisor with normal crossings relative to S. We define Y = Supp D, U = X−Y, and denote by
i : U → X the canonical immersion. For every geometric point s̄ of S and every maximal point y of the geometric
fiber Ys̄, the ring R = OXs̄,y is a discrete valuation ring.

Definition (B.1.3) Let F be a sheaf of sets on U. We say that F is tamely ramified on X (along D) relative to S if,
for every geometric point s̄ of S, the following condition is satisfied: for every maximal point y of Ys̄, the restriction
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of F to the fraction field K of OXs̄ is represented by the spectrum of an étale K-algebra L which is tamely ramified
over OXs̄,y .

Definition (B.1.4) If F is a sheaf of groups on U, tamely ramified on X relative to S, we denote by H1
t (U,F) the

subset of H1(U,F) consisting of classes of (left) torsors under F that are tamely ramified on X relative to S.

(B.1.5) Let Ct((U,X)/S) or simply Ct be the category of étale coverings of U that are tamely ramified on X
relative to S.

Suppose U is connected, and let a be a geometric point of U. Let Γt be the functor that assigns, to an étale
covering U′ of U that is tamely ramified on X relative to S, the set of geometric points of U′ lying over a. The
functor Γt is represented by a pro-object, which is called the tamely ramified universal covering of (U,X) relative to
S, punctured at a. The group opposite to the group of U-automorphisms of the tamely ramified universal covering
is called the tame fundamental group and is denoted by πt

1((U,X)/S, a) or simply πt
1(U, a) or even πt

1(U). We have
a canonical surjective map π1(U, a) ↠ πt

1(U, a) which is an isomorphism if X is proper (cf. [SGA7-II, V 6.9]).

The importance of the notion of a normal crossings divisor is its role in:

Lemma (B.1.6) (Abhyankar’s Lemma,[SGA1, XIII, Prop 5.2, Cor 5.3]).
Let Y be a regular noetherian scheme, X a normal noetherian scheme, and f : X → Y a finite, flat, generically

étale map which is tamely ramified. If the support of the branch scheme BX/Y of f , the closed subscheme defined
by the annihilator of f∗Ω1

X/Y on Y, coincides with the support of a normal crossings divisor D on Y, then
1. X is regular,
2. BX/Y = D as closed subschemes of Y, so BX/Y is a normal crossings divisor on Y,
3. for each y ∈ BX/Y and x ∈ f−1(y), there is an isomorphism of Osh

Y,y-algebras

Osh
X,x ' Osh

Y,y [T1, . . . ,Tr] / (Te1
1 − f1, . . . ,Ter

r − fr)

where f1, . . . , fr define the normal crossings divisor D in an étale neighborhood of y and e1, . . . , er ≥ 1 are relatively
prime to the characteristic of k(y).

B.2 Swan Conductor

(B.2.1) Let X be a smooth k-curve and x̄ a geometric point above x ∈ |X0|. Let U := X\x be the complement of x
in X, X(x) := Spec(Oh

X,x) be the spectrum of the henselianization of the local ring OX,x at x, and X(x̄) := Spec(OX,x̄)

be the spectrum of the strict henselization defined by x̄. Let U(x) := U ×X X(x) and U(x̄) := U ×X X(x̄). Let
Ix := π1(U(x̄)) ⊂ Dx := π1

(
U(x)

)
denote the inertia and decomposition groups of X at x. We have a short exact

sequence that splits:

1→ Ix → Dx → π1(x)→ 1,

And we denote by Px ⊂ Ix the unique p-Sylow subgroup of Ix (the wild inertia group) and by It
x := Ix/Px (the tame

inertia group). There exists a π1(k)-equivariant isomorphism It
x

∼→ (Ẑ/Zp)(−1).

(B.2.2) Let C be a Qℓ-coefficient on X. To C|U(x) is associated a representation of Dx on a finite-dimensional
Q-vector space Cx. This allows us to define the local Swan conductor Swx (C) of C at x. The group Dx is equipped
with a decreasing filtration I(λ)x , λ ≥ 0 by closed normal subgroups (higher ramification subgroups-[Ser80, S68,
Chap. IV]) such that:

34



−
⋂
λ′<λ I(λ

′)
x = I(λ)x ,

⋂
λx∈R I(λ)x = 0,

−Ix := I(0)x ⊂ Dx is the inertia group,
−Px := I(0+)

x ⊂ I(0)x is the wild inertia group, i.e., the p-Sylow subgroup of I(0)x , where we define I(µ+)
x :=

∪λ<µI(λ)x ⊂ I(µ)x .
Let us denote Css

x as the Ix-semisimplification of Cx. If W ⊂ Css
x is a nontrivial simple submodule of Px, there

exists a unique λ > 0 such that WI(λ+)
x = 0 and WI(λ)

x 6= 0. We call λ the slope of W, and (Css
x )I(λ+)

x /(Css
x )I(λ)

x is the
sum of simple Px-submodules of Css

x with slope λ. With these notations, we define

Swx(C) =
∑
λ>0

λdim
(
(Css

x )I(λ+)
x /(Css

x )I(λ)
x

)
.

(B.2.3) If Swx(C) = 0, we say that C is tamely ramified at x. We also denote the slope λ of C at x as α (Cx) = αx(C)
which Cx is the corresponding Galois representation.

(B.2.4) If the representation Cx is irreducible, by the definition we have

Swx(C) = dim(Cx) · α(Cx) (V irreducible).

Then for Cx not necessarily irreducible, by additivity of Swan conductor, we have

Swx(C) ≤ dim(Cx) · α(Cx). (B.1)

(B.2.5) Let X be a smooth curve over k which is algebraically closed, X ↪→ X its smooth compactification,
and C a Qℓ-coefficient on X. The local Swan conductors are related to the Euler-Poincaré characteristic χc(C) :=∑

i≥0(−1)i dim Hi
c(X, C) through the Grothendieck-Ogg-Shafarevich formula:

Theorem (B.2.6) ([Lau87, Theorem 2.2.1.2]).

χc(C) = rank(C)χc(X)−
∑

x∈X\X

n(x)Swx(C).

Sometimes it is convenient to globalize the definition of the Swan conductor by considering the effective divisor
Sw(C) =

∑
x∈X\X Swx(C)[x], X ⊂ X is a smooth compactification.

Definition (B.2.7) Let D ∈ Div+(X) be an effective Cartier divisor. The subset CQℓ,r(X,D) ⊂ CQℓ,r(X) is defined
by the condition Sw(V) ≤ D. If V lies in CQℓ,r(X,D), we say that its ramification is bounded by D.

(B.2.8) It’s shown in [EK12, Proposition 3.9] that for any V ∈ CQℓ,r(X) there is a divisor D with V ∈ CQℓ,r(X,D).

Example (B.2.9) If X is an affine curve, then we have H0
c(X, C) = 0, then by (B.2.6) and (B.1), we get

dim H1
c(X, C) ≤ r

(
b1(X) +

∑
αx(C)

)
. (B.2)

B.3 Dimension ≥ 2

In higher dimensions, there are several possible definitions of the notion of tameness at infinity. Let X ↪→ X be a
normal compactification. We say that a Qℓ-coefficient C on X is tamely ramified at a point x ∈ X\X of codimension
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1 if the representation of π1
(
X(x̄)

)
corresponding to C|X(x̄)

is. We say that C is tame along X\X if it is tame at
every point x ∈ X\X of codimension 1.

When X is smooth over k, the following conditions:

1. (curve)-tameness: For every smooth curve C over k and every morphism C→ X, C|C is tame.

2. (divisor)-tameness: For every normal compactification X ↪→ X, C is tamely ramified along X\X.

are equivalent, and we will simply say that C is tame.
When X admits a smooth compactification X ↪→ X such that X\X is a normal crossings divisor, C is tame if and

only if it is tame along X\X.
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