Notes on Artin's Theorem on Elementary Fibrations in SGA 4

Yuenian Zhou

Definition [SGA4, Définition 3.1.]

An elementary fibration is a morphism of schemes $f: X \to S$ that can be embedded into a commutative diagram

$$X \xrightarrow{j} \overline{X} \xleftarrow{i} Y$$

$$\downarrow \bar{f} \swarrow g$$

$$S$$

satisfying the following conditions:

- 1. *j* is a dense open immersion in each fiber, and $X = \overline{X} \setminus Y$.
- 2. \bar{f} is smooth and projective, with geometrically irreducible fibers of dimension 1.
- 3. g is an étale covering, and each fiber of g is non-empty.

Definition [SGA4, Définition 3.2.]

We call a good neighborhood relative to S an S-scheme X such that there exist S-schemes

$$X = X_n, \dots, X_0 = S$$

and elementary fibrations $f_i: X_i \to X_{i-1}, i = 1, \dots, n$.

Theorem [SGA4, Proposition 3.3]

Let k be an algebraically closed field, X a smooth scheme over $\operatorname{Spec}(k)$, and $x \in X$ a rational point. There exists an open subset of X containing x that is a good neighborhood (relative to $\operatorname{Spec}(k)$).

Proof. We may assume that X is irreducible. By induction on dim X = n, it suffices to find a neighborhood U of x in X and an elementary fibration $f: U \to V$, where V is smooth of dimension n-1. Indeed, there will exist a neighborhood V' of v = f(x) that is a good neighborhood, and we can take $U' = U \cap V'$ as a good neighborhood of x.

Since the theorem is Zariski local, we may suppose that $X \subset \mathbb{A}^r$ is affine. Let X_0 be the closure of X in \mathbf{P}^r , and we can write $X_0 = X \cup D$ with D ample. Let \overline{X} be the normalization of X_0 and $\pi : \overline{X} \to X_0$, the preimage $\pi^{-1}D$ is ample with complement X_0 because π is finite. Set $Y = \overline{X} \setminus X$, with the reduced induced structure. Furthermore, let $S \subset \overline{X}$ denote the closed subset of singular points. We have $S \subset Y$, and:

$$\dim \overline{X} = \dim X = n,$$

$$\dim Y = n-1 \quad [\text{Stacks}, Tag0BCV],$$

$$\dim S \leq n-2 \quad (\text{since normal implies smooth in codimension 1}),$$

Embed \overline{X} into a projective space \mathbf{P}^N using the ample bundle. There exist hyperplanes H_1, \ldots, H_{n-1} in \mathbf{P}^N , where H_i is the zero set of:

$$\sum_{v=0}^{N} a_{iv} x_v = 0,$$

such that H_i contains x and the intersection $L = H_1 \cap \cdots \cap H_{n-1}$ has dimension N - n + 1 and intersects \overline{X} and Y transversely. By Bertini's theorem, the intersection $\overline{X} \cap L$ is a smooth and connected curve, and $Y \cap L$ is of dimension 0 so is a finite set.

Consider the projection $\mathbf{P}^N \to \mathbf{P}^{n-1}$ defined using the projective coordinates:

$$y_i = \sum_{v=0}^{N} a_{iv} x_v.$$

This is a rational map defined outside the projection center $C = H_0 \cap \cdots \cap H_{n-1}$. Let $\epsilon : P' \to \mathbf{P}^N$ be the blow-up of C, giving a diagram

$$\mathbf{P}^{N} \xrightarrow{\epsilon} P' \downarrow_{\pi}$$

$$\mathbf{P}^{n-1}$$

where π is a morphism [Lü93, Lemma 2.2]. Let $\overline{X}' \subset P'$ denote the strict transform, i.e., the closure of $\epsilon^{-1}(\overline{X}\setminus(\overline{X}\cap C))$.

Since C intersects \overline{X} transversely, the morphism $\overline{X}' \to \overline{X}$ is the blow-up of the finite set $\overline{X} \cap C$. Let $X' = X \setminus (\overline{X} \cap C)$, which also identifies as an open subscheme of \overline{X}' , and let $Y' = \overline{X}' \setminus X'$ be the closed subscheme with reduced induced structure. We have the following diagram \mathbf{D} of morphisms:

$$X' \xrightarrow{j} \overline{X}' \xleftarrow{i} Y'$$

$$\downarrow^{\overline{f}} \swarrow^{g'}$$

$$\mathbf{P}^{n-1}$$

Finally, we claim that there exists a neighborhood V of v = f(x) such that the restriction of \mathbf{D} to V satisfies the condition of elementary fibration. Condition 1 is obvious. For condition 2, we have $\overline{X} \cap L$ is a smooth curve, and we can check that we have a bijective morphism:

$$\overline{f}^{-1}(v) \to \overline{X} \cap L$$

induced by ϵ . Actually, pick a point $v \in \mathbf{P}^{n-1}$, the fiber of f over v is

$$\overline{f}^{-1}(v) = \left\{ p' \in \overline{X}' \mid f'(p') = v \right\}.$$

Since $f = \pi|_{\bar{X}'}$ and π came from the linear forms y_0, \ldots, y_{n-1} , saying $\pi(p') = v = [v_0 : \cdots : v_{n-1}]$ means precisely

$$\left[y_0\left(\epsilon\left(p'\right)\right):\cdots:y_{n-1}\left(\epsilon\left(p'\right)\right)\right]=\left[v_0:\cdots:v_{n-1}\right].$$

If $v = [1:0:\cdots:0]$, then the condition

$$\left[y_0\left(\epsilon\left(p'\right)\right):y_1\left(\epsilon\left(p'\right)\right):\cdots:y_{n-1}\left(\epsilon\left(p'\right)\right)\right]=\left[1:0:\cdots:0\right]$$

forces

$$y_1(\epsilon(p')) = \cdots = y_{n-1}(\epsilon(p')) = 0$$
 and $y_0(\epsilon(p')) \neq 0$.

Hence $\epsilon(p')$ indeed lies in

$$\underbrace{\left\{y_1=0,\ldots,y_{n-1}=0\right\}}_{-L}\subset\mathbf{P}^N,$$

so $\epsilon(p') \in L = H_1 \cap \cdots \cap H_{n-1}$. Moreover, since $p' \in \overline{X}'$, we also have $\epsilon(p') \in \overline{X}$. Altogether, $\epsilon(p') \in \overline{X} \cap L$.

$$\overline{f}^{-1}(v) \longrightarrow \overline{X} \cap L, \quad p' \mapsto \epsilon(p').$$

If $v = [v_0 : \cdots : v_{n-1}]$ is more general, one often makes a projective change of coordinates in \mathbf{P}^{n-1} so that v becomes $[1:0:\cdots:0]$. The map is bijective since $\overline{X} \cap L \cap C = \emptyset$ and away from the blow-up center C the map ϵ is an isomorphism, so we know $\overline{f}^{-1}(v) \longrightarrow \overline{X} \cap L$ is bijective.

To verify that \overline{f}' is smooth above a neighborhood of v, it suffices, by Hironaka's lemma [SGA1, III. 2.6 (ii)], to check that it is smooth at the generic point of $f^{-1}(v)$. At this point, \overline{X}' is isomorphic to \overline{X} , and the morphism is smooth because L intersects \overline{X} transversely.

It remains to show that g' is étale in a neighborhood of v.

Since Y has dimension n-1, the fiber of g') is generically of dimension 0. But as g' is proper hence closed, each fiber of g' is non-empty. We have

$$Y' = \epsilon^{-1}(Y) \coprod D_1 \coprod \cdots \coprod D_r,$$

where $\overline{X} \cap C = \{P_1, \dots, P_r\}$, and D_i is the blow-up of P_i in \overline{X} . Each D_i is identified with $\epsilon^{-1}(P_i)$ and its fiber is mapped isomorphically onto \mathbf{P}^{n-1} . It is defined at each point of Y, and the induced morphism on Y is nothing but $g'_{\epsilon^{-1}(Y)}$. The map is étale above v because L intersects Y transversely, and thus g' is étale above v.

Thus, we conclude that there exists a good neighborhood of x.

References

- [Lü93] W. Lütkebohmert. On compactification of schemes. *Manuscripta mathematica*, 80(1):95--112, 1993. URL http://eudml.org/doc/155862.
- [SGA1] A. Grothendieck. Revêtements étales et groupe fondamental (SGA 1),1971, volume 224 of Lecture notes in mathematics. Springer-Verlag, 1972.
- [SGA4] M. Artin, A. Grothendieck, and J.-L. Verdier. Theorie des Topos et Cohomologie Etale des Schemas I, II, III, volume 269, 270, 305 of Lecture Notes in Mathematics. Springer, 1971.
- [Stacks] Stacks Project Authors. Stacks Project. https://stacks.math.columbia.edu, 2025.